A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Analysis of the characteristics of paulownia lignocellulose and hydrogen production potential via photo fermentation. | LitMetric

Paulownia biomass is rich in carbohydrates, making which a potential feedstock for biohydrogen production. In the study, different parts and varieties of Paulownia were chose as substrates to evaluate hydrogen production potential of paulownia lignocellulose via biohydrogen production by photo fermentation (BHPPF) and energy conversion efficiency (ECE). Results showed the highest cumulative hydrogen yield (CHY) of 67.11 mL/g total solids (TS) and ECE of 4.74% were obtained from leaves of Paulownia, which were 121.06% and 115.45% higher than those of the branches. Moreover, Paulownia jianshiensis leaves were found to be the best variety for BHPPF, with the maximum CHY of 98.83 mL/g TS and ECE of 7.18%. Using Paulownia waste as the substrate to produce hydrogen helps broaden the range of raw materials for BHPPF and improve the economic utilization of forestry waste.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.126361DOI Listing

Publication Analysis

Top Keywords

paulownia lignocellulose
8
hydrogen production
8
production potential
8
photo fermentation
8
biohydrogen production
8
paulownia
7
analysis characteristics
4
characteristics paulownia
4
hydrogen
4
lignocellulose hydrogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!