Tallgrass prairie wildlife exposure to spray drift from commonly used soybean insecticides in Midwestern USA.

Sci Total Environ

Agricultural Research Service, U.S. Department of Agriculture, University of Minnesota, 1991 Upper Buford Circle, Room 439, Saint Paul, MN 55108, USA.

Published: April 2022

Insecticides are widely used in the Midwestern USA to combat soybean aphids (Aphis glycines), a globally important crop pest. Broad-spectrum foliar insecticides such as chlorpyrifos, lambda-cyhalothrin, and bifenthrin (hereafter, "target insecticides") are toxic to wildlife in laboratory settings; however, little information exists regarding drift and deposition of these insecticides in fragmented tallgrass prairie grasslands such as those in Minnesota, USA. To address this information gap, target insecticide spray drift and deposition were measured on passive samplers and arthropods in grasslands adjacent to crop fields in Minnesota. Samples were collected at focal soybean field sites immediately following target insecticide application and at reference corn field sites without target insecticide application. Target insecticides were detected 400 m into grasslands at both focal and reference sites. Residues of chlorpyrifos, an insecticide especially toxic to pollinators and birds, were measured above the contact lethal dose (LD) for honey bees (Apis mellifera) up to 25 m from field edges in adjacent grasslands. Chlorpyrifos residues on arthropods were below the acute oral LD for several common farmland bird species but were above the level shown to impair migratory orientation in white-crowed sparrows (Zonotrichia leucophrys). Deposition of target insecticides on passive samplers was inversely associated with distance from field edge and percent canopy cover of grassland vegetation, and positively associated with samplers placed at mid-canopy compared to ground level. Target insecticide deposition on arthropods had an inverse relationship with vertical vegetation density and was positively associated with maximum height of vegetation. Tallgrass prairie with cover ≥25 m from row crop edges may provide wildlife habitat with lower exposure to foliar application insecticides. Prairie management regimes that increase percent canopy cover and density of vegetation may also reduce exposure of wildlife to these insecticides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151745DOI Listing

Publication Analysis

Top Keywords

target insecticide
16
tallgrass prairie
12
spray drift
8
insecticides
8
insecticides midwestern
8
midwestern usa
8
drift deposition
8
passive samplers
8
field sites
8
sites target
8

Similar Publications

The large pine weevil ( L.) is a major pest in European and Asian coniferous forests, particularly in managed plantations where clear-felling practices create ideal conditions for its population growth. Traditional management practices involving synthetic insecticides have limited efficacy in terms of reducing pest populations and pose environmental risks.

View Article and Find Full Text PDF

This study examines resistance inheritance to the pyrethroid insecticides esfenvalerate and deltamethrin in a Puerto Rican strain of fall armyworm (FAW), , a major global pest of corn. The resistant strain (PPR) showed significantly higher resistance compared to a susceptible strain (SUS), with a 62-fold X-linked and 15-fold autosomal-linked resistance ratio (RR) for esfenvalerate and deltamethrin, respectively. Resistance was incompletely dominant for both insecticides.

View Article and Find Full Text PDF

The white-backed planthopper (WBPH) poses a significant threat to rice crops globally. A bioassay was conducted on three WBPH populations collected from Korean rice fields to assess the effectiveness of five insecticides, including etofenprox and fenobucarb. The results showed a mortality rate of over 97% at the recommended concentration for carbamate and organophosphate insecticides.

View Article and Find Full Text PDF

The continuous use of synthetic insecticides to suppress mosquito larvae has detrimental impacts on the environment and human health. Finding novel and target-specific bio-insecticides has become crucial. Here, the larvicidal and genotoxic activities of different extracts from and toward larvae were investigated.

View Article and Find Full Text PDF

Nanoencapsulated Essential Oils for Post-Harvest Preservation of Stored Cereals: A Review.

Foods

December 2024

Laboratory of Herbal Pesticides, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, India.

Cereal grains are frequently attacked by microorganisms and insects during storage and processing, which negatively affects their quality, safety, and market value. Therefore, protecting stored grains from microbial contamination is crucial for food industries, farmers, public health associations, and environmental agencies. Due to the negative impact of synthetic gray chemicals, antimicrobial plant-based essential oils (EOs) can serve as alternative, safer, environmentally friendly preservatives that can prolong the shelf life of cereals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!