Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Guanine-rich nucleic acid sequences have a tendency to form four-stranded non-canonical motifs known as G-quadruplexes. These motifs may adopt a wide range of structures characterized by size, strand orientation, guanine base conformation, and fold topology. Using three K-bound model systems, we show that vibrational coupling between guanine C6 = O and ring modes varies between parallel-stranded and antiparallel-stranded G-quadruplexes, and that such structures can be distinguished by comparison of the polarization dependences of cross-peaks in their two-dimensional infrared (2D IR) spectra. Combined with previously defined vibrational frequency trends, this analysis reveals key features of a 30-nucleotide unimolecular variant of the Bcl-2 proximal promoter that are consistent with its reported structure. This study shows that 2D IR spectroscopy is a convenient method for analyzing G-quadruplex structures that can be applied to complex sequences where traditional high-resolution methods are limited by solubility and disorder.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2021.120596 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!