The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury.

Pharmacol Res

Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic address:

Published: January 2022

During cardiac reperfusion after myocardial infarction, the heart is subjected to cascading cycles of ischaemia reperfusion injury (IRI). Patients presenting with this injury succumb to myocardial dysfunction resulting in myocardial cell death, which contributes to morbidity and mortality. New targeted therapies are required if the myocardium is to be protected from this injury and improve patient outcomes. Extensive research into the role of mitochondria during ischaemia and reperfusion has unveiled one of the most important sites contributing towards this injury; specifically, the opening of the mitochondrial permeability transition pore. The opening of this pore occurs during reperfusion and results in mitochondria swelling and dysfunction, promoting apoptotic cell death. Activation of mitochondrial ATP-sensitive potassium channels (mitoK) channels, uncoupling proteins, and inhibition of glycogen synthase kinase-3β (GSK3β) phosphorylation have been identified to delay mitochondrial permeability transition pore opening and reduce reactive oxygen species formation, thereby decreasing infarct size. Statins have recently been identified to provide a direct cardioprotective effect on these specific mitochondrial components, all of which reduce the severity of myocardial IRI, promoting the ability of statins to be a considerate preconditioning agent. This review will outline what has currently been shown in regard to statins cardioprotective effects on mitochondria during myocardial IRI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2021.105986DOI Listing

Publication Analysis

Top Keywords

ischaemia reperfusion
8
cell death
8
mitochondrial permeability
8
permeability transition
8
transition pore
8
pore opening
8
myocardial iri
8
myocardial
6
mitochondrial
5
injury
5

Similar Publications

Acute ischemic stroke (AIS) triggers immune responses and neuroinflammation, contributing to brain injury. Histone lactylation, a metabolic stress-related histone modification, plays a critical role in various diseases, but its involvement in cerebral ischemia remains unclear. This study utilized a transient middle cerebral artery occlusion/reperfusion (MCAO/R) model and an oxygen-glucose deprivation/reoxygenation (OGD/R) model to investigate the role of microglial histone lactylation in ischemia-reperfusion injury.

View Article and Find Full Text PDF

Objectives: To explore the neuroprotective mechanism of electroacupuncture at the acupoints and in rats with cerebral ischemia-reperfusion (IR) injury.

Methods: Forty-eight male SD rats were equally randomized into sham operation group, cerebral IR model group, acupoint electroacupuncture group and non-acupoint acupuncture group. In the latter 3 groups, cerebral focal ischemic injury was induced using the Longa method; in the two electroacupuncture groups, electroacupuncture was performed either at the acupoints and or at non-acupoint sites for 7 days.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Xiao-xu-ming decoction (XXMD), a prominent traditional Chinese medicinal formula historically revered for stroke treatment, demonstrates pronounced efficacy in ameliorating ischemic stroke injury.

Aim Of The Study: This study aims to investigate the effects and mechanisms of XXMD on neuroprotection subsequent to cerebral ischemia/reperfusion in vivo and in vitro.

Materials And Methods: Neurobehavioral test, TTC staining, HE staining and nissl staining were used to examine the neuroprotective effect of XXMD on cerebral ischemia-reperfusion injury induced by middle cerebral artery occlusion (MCAO) in rats.

View Article and Find Full Text PDF

The gastrointestinal tract can be deranged by ailments including sepsis, trauma and haemorrhage. Ischaemic injury provokes a common constellation of microscopic and macroscopic changes that, together with the paradoxical exacerbation of cellular dysfunction and death following restoration of blood flow, are collectively known as ischaemia-reperfusion injury (IRI). Although much of the gastrointestinal tract is normally hypoxemic, intestinal IRI results when there is inadequate oxygen availability due to poor supply (pathological hypoxia) or abnormal tissue oxygen use and metabolism (dysoxia).

View Article and Find Full Text PDF

Topological functional network analysis of cortical blood flow in hyperacute ischemic rats.

Brain Struct Funct

December 2024

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.

Acute cerebral ischemia alters brain network connectivity, leading to notable increases in both anatomical and functional connectivity while observing a reduction in metabolic connectivity. However, alterations of the cerebral blood flow (CBF) based functional connectivity remain unclear. We collected continuous CBF images using laser speckle contrast imaging (LSCI) technology to monitor ischemic occlusion-reperfusion progression through occlusion of the left carotid artery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!