Important precursors of monoaminergic neurotransmitters, dietary tryptophan (TRP), tyrosine, and phenylalanine (all referred to as TTP), play crucial roles in a wide range of behavioral and emotional functions. In the current study, we investigated whether diets devoid of TTP or diets deficient in TRP alone can affect body weight, behavioral characteristics, and gut microbiota, by comparing mice fed on these amino acids-depleted diets to mice fed on diets containing regular levels of amino acids. Both dietary TTP- and TRP-deprived animals showed a reduction in food intake and body weight. In behavioral analyses, the mice fed TTP-deprived diets were more active than mice fed diets containing regular levels of amino acids. The TRP-deprived group exhibited a reduction in serum TRP levels, concomitant with a decrease in serotonin and 5-hydroxyindoleacetic acid levels in some regions of the brain. The TTP-deprived group showed a reduction in TTP levels in the serum, concomitant with decreases in both phenylalanine and tyrosine levels in the hippocampus, as well as serotonin, norepinephrine, and dopamine concentrations in some regions of the brain. Regarding the effects of TRP or TTP deprivation on gut microbial ecology, the relative abundance of genus Roseburia was significantly reduced in the TTP-deprived group than in the dietary restriction control group. Interestingly, TTP was found even in the feces of mice fed TTP- and TRP-deficient diets, suggesting that TTP is produced by microbial or enzymatic digestion of the host-derived proteins. However, microbe generated TTP did not compensate for the systemic TTP deficiency induced by the lack of dietary TTP intake. Collectively, these results indicate that chronic dietary TTP deprivation induces decreased monoamines and their metabolites in a brain region-specific manner. The altered activities of the monoaminergic systems may contribute to increased locomotor activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.physbeh.2021.113653DOI Listing

Publication Analysis

Top Keywords

mice fed
20
ttp
10
dietary tryptophan
8
tyrosine phenylalanine
8
food intake
8
body weight
8
weight behavioral
8
fed diets
8
diets regular
8
regular levels
8

Similar Publications

Background: The inheritance of the short allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD).

View Article and Find Full Text PDF

Background/objectives: The pathogenesis of metabolic dysfunction-associated steatohepatitis (MASH) is closely associated with increased oxidative stress and lipid peroxidation. Coenzyme Q (CoQ) and selenium (Se) are well-established antioxidants with protective effects against oxidative damage. This study aimed to investigate the effects of CoQ and Se in ameliorating MASH induced by a methionine choline-deficient (MCD) diet in mice.

View Article and Find Full Text PDF

Background/objectives: Obesity is a key factor in metabolic syndrome (MetS) development. Consumption of a high-fat diet (HFD) accelerates the onset of obesity and associated metabolic complications. (PB) has been traditionally utilized in Korean medicine for its antioxidant, anti-diabetic, anticancer, and hepatoprotective effects.

View Article and Find Full Text PDF

Microorganisms synthesize diverse types of exopolysaccharides (EPSs). EPSs with varying structural and physical properties can demonstrate unique health benefits, which allow for their tailored applications as functional foods such as prebiotics. Levan, a fructose-based EPS, is gaining considerable attention as an effective prebiotic to support the growth of beneficial gut bacteria.

View Article and Find Full Text PDF

Systematic Analysis of UFMylation Family Genes in Tissues of Mice with Metabolic Dysfunction-Associated Steatotic Liver Disease.

Genes (Basel)

December 2024

Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 310036, China.

Background/objectives: UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as a defender of liver homeostasis in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the regulation of UFMylation in MASLD remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!