Spatiotemporal variations of surface water quality in a medium-sized river catchment (Northwestern Germany) with agricultural and urban land use over a five-year period with extremely dry summers.

Sci Total Environ

Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstrasse 24, 48149 Münster, Germany. Electronic address:

Published: April 2022

Medium-sized rivers, which are used for intensive agriculture and urban infrastructure, are subject to manifold hydrochemical stressors. Identifying and monitoring these stressors is important for river basin management and a functioning ecosystem. To understand the spatiotemporal variation of surface water quality in a highly modified lowland river, the Münstersche Aa River (Northwestern Germany) with 62% of land used for agriculture and 26% urban/residential area, was exemplarily studied. A total of 519 samples were collected using two automated high-frequency samplers and five catchment-wide sampling campaigns. They covered the five-year period 2015-2020 and included two extremely dry summers. The Münstersche Aa catchment is dominated by low permeable strata resulting in surface water runoff (Baseflow Index: 0.41) which leads to a high amplitude of discharge variation (mean discharge: 0.7 m/s) with high flow conditions in winter/spring, and low discharge during summer/fall. In wintertime, maximum nitrate concentrations (up to 73 mg NO/L) and loads (up to 1300 t NO/a; up to 98% in winter) correlate with high-flow conditions. δO and δN isotopic analysis indicated manure from farmland as the major source of nitrate whereas the impact of municipal wastewater treatment plants was neglectable. Increased nitrate concentrations are linked to the higher proportion of farmland in the upper catchment (77%) compared with the lower catchment (47%). In summertime, at extremely low flow conditions, surface water consisted of up to 100% of treated wastewater, resulting in the highest measured chloride, sodium and potassium concentrations. The river is impacted by strongly seasonal and different stressors, which can be expected to intensify with ongoing climate change. Results from this study may help to adapt monitoring schemes for the Münstersche Aa but also for other lowland streams with comparable land-use targeting the goals of the Water Framework Directive.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151730DOI Listing

Publication Analysis

Top Keywords

surface water
16
water quality
8
northwestern germany
8
five-year period
8
extremely dry
8
dry summers
8
flow conditions
8
nitrate concentrations
8
water
5
river
5

Similar Publications

Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.

View Article and Find Full Text PDF

Catalyst design plays a critical role in ensuring sustainable and effective energy conversion. Electrocatalytic materials need to be able to control active sites and introduce defects in both acidic and alkaline electrolytes. Furthermore, producing efficient catalysts with a distinct surface structure advances our comprehension of the mechanism.

View Article and Find Full Text PDF

Dental resin-based restorative (RBR) materials represent the most ubiquitous biomaterials utilized globally. Methacrylate (MA)-ester based monomers - present in RBRs since the 1960s - experience significantly elevated rates of failure compared to previously used silver/amalgam fillings attributed to their hydrolysis reported in both simulated and in vivo environments. There is currently no alternative RBR chemistry that matches the functional and clinical workflow considerations of MA-RBRs while addressing their limited-service lives.

View Article and Find Full Text PDF

Unlabelled: The presence of bromate in water poses a significant health risk. In order to effectively eliminate bromate from water, this study synthesized a series of ternary Zn-Ni-Al layered double hydroxides with varying Zn/Ni/Al atomic ratios using a co-precipitation method. The adsorbents were characterized using various techniques including XRD, Fourier transform infrared spectroscopy, and N adsorption-desorption isotherms.

View Article and Find Full Text PDF

Surface active ionic liquids (SAILs), offer potential advantages for pharmaceutical applications. Given the low permeability of gabapentin, an antiepileptic drug, in the gastrointestinal tract as classified by the Biopharmaceutics Classification Systems (BCS), understanding the micellization behavior of SAILs is essential for developing effective drug delivery systems to improve gabapentin bioavailability. This study explores the micellization and thermophysical behavior of SAILs (2-hydroxyethyl)ammonium laurate [2-HEA][Lau], bis(2-hydroxyethyl)ammonium laurate [BHEA][Lau], and tris(2-hydroxyethyl)ammonium laurate [THEA][Lau] in the presence of aqueous gabapentin solution at varied temperatures through COSMO analysis, electrical conductivity and surface tension measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!