Growth-phase dependence of bacterial membrane lipid profile and labeling for in-cell solid-state NMR applications.

Biochim Biophys Acta Biomembr

Department of Chemistry, Université du Québec à Montréal, C.P. 8888, Succursale Centre-Ville, Montreal H3C 3P8, Canada; Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École normale supérieure, PSL University, 75005 Paris, France. Electronic address:

Published: February 2022

Cell labeling is a preliminary step in multiple biophysical approaches, including the solid-state nuclear magnetic resonance (NMR) study of bacteria in vivo. Deuterium solid-state NMR has been used in the past years to probe bacterial membranes and their interactions with antimicrobial peptides, following a standard labeling protocol. Recent results from our laboratory on a slow-growing bacterium has shown the need to optimize this protocol, especially the bacterial growth time before harvest and the concentration of exogenous labeled fatty acids to be used for both Escherichia coli and Bacillus subtilis. It is also essential for the protocol to remain harmless to cells while providing optimal labeling. We have therefore developed a fast and facile approach to monitor the lipid composition of bacterial membranes under various growth conditions, combining solution P NMR and GCMS. Using this approach, the optimized labeling conditions of Escherichia coli and Bacillus subtilis with deuterated palmitic acid were determined. Our results show a modification of B. subtilis phospholipid profile as a function of the growth stage, as opposed to E. coli. Our protocol recommends low concentrations of exogenous palmitic acid in the growth medium, and bacteria harvest after the exponential phase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2021.183819DOI Listing

Publication Analysis

Top Keywords

solid-state nmr
8
bacterial membranes
8
escherichia coli
8
coli bacillus
8
bacillus subtilis
8
palmitic acid
8
labeling
5
growth-phase dependence
4
bacterial
4
dependence bacterial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!