The unfolded states of fibronectin (FN) subsequently induce the formation of an extracellular matrix (ECM) fibrillar network, which is necessary to generate new substitutive tissues. Here, the authors demonstrate that negatively charged small unilamellar vesicles (SUVs) qualify as candidates for FN delivery due to their remarkable effects on the autonomous binding and unfolding of FN, which leads to increased tissue regeneration. In vitro experiments revealed that the FN-SUV complex remarkably increased the attachment, differentiation, and migration of fibroblasts. The potential utilization of this complex in vivo to treat inflammatory colon diseases is also described based on results obtained for ameliorated conditions in rats with ulcerative colitis (UC) that had been treated with the FN-SUV complex. Their findings provide a new ECM-delivery platform for ECM-based therapeutic applications and suggest that properly designed SUVs may be an unprecedented FN-delivery system that is highly effective in treating UC and inflammatory bowel diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202101599 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Center for Complexity and Biosystems, Department of Environmental Science and Policy, University of Milan, 20133 Milan, Italy.
Collective migration of cancer cells is often interpreted using concepts derived from the physics of active matter, but the experimental evidence is mostly restricted to observations made in vitro. Here, we study collective invasion of metastatic cancer cells injected into the mouse deep dermis using intravital multiphoton microscopy combined with a skin window technique and three-dimensional quantitative image analysis. We observe a multicellular but low-cohesive migration mode characterized by rotational patterns which self-organize into antiparallel persistent tracks with orientational nematic order.
View Article and Find Full Text PDFHum Reprod
January 2025
IRSD, Université de Toulouse, INSERM, INRAE, ENVT, Univ Toulouse III-Paul Sabatier (UPS), Toulouse, France.
Study Question: Does a human fallopian tube (HFT) organoid model offer a favourable apical environment for human sperm survival and motility?
Summary Answer: After differentiation, the apical compartment of a new HFT organoid model provides a favourable environment for sperm motility, which is better than commercial media.
What Is Known Already: HFTs are the site of major events that are crucial for achieving an ongoing pregnancy, such as gamete survival and competence, fertilization steps, and preimplantation embryo development. In order to better understand the tubal physiology and tubal factors involved in these reproductive functions, and to improve still suboptimal in vitro conditions for gamete preparation and embryo culture during IVF, we sought to develop an HFT organoid model from isolated adult stem cells to allow spermatozoa co-culture in the apical compartment.
Adv Sci (Weinh)
January 2025
ETH Zurich, Department of Biosystems Science and Engineering, Klingelbergstrasse 48, Basel, CH-4056, Switzerland.
Neo-vascularization plays a key role in achieving long-term viability of engineered cells contained in medical implants used in precision medicine. Moreover, strategies to promote neo-vascularization around medical implants may also be useful to promote the healing of deep wounds. In this context, a biocompatible, electroconductive borophene-poly(ε-caprolactone) (PCL) 3D platform is developed, which is called VOLT, to support designer cells engineered with a direct-current (DC) voltage-controlled gene circuit that drives secretion of vascular endothelial growth factor A (VEGFA).
View Article and Find Full Text PDFSci Adv
January 2025
Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, OHSU, Portland, OR 97201, USA.
A hallmark of chronic and inflammatory diseases is the formation of a fibrotic and stiff extracellular matrix (ECM), typically associated with abnormal, leaky microvascular capillaries. Mechanisms explaining how the microvasculature responds to ECM alterations remain unknown. Here, we used a microphysiological model of capillaries on a chip mimicking the characteristics of healthy or fibrotic collagen to test the hypothesis that perivascular cells mediate the response of vascular capillaries to mechanical and structural changes in the human ECM.
View Article and Find Full Text PDFJ Cancer Res Ther
December 2024
Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!