Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Deterministic approximations to stochastic Susceptible-Infectious-Susceptible models typically predict a stable endemic steady-state when above threshold. This can be hard to relate to the underlying stochastic dynamics, which has no endemic steady-state but can exhibit approximately stable behaviour. Here, we relate the approximate models to the stochastic dynamics via the definition of the quasi-stationary distribution (QSD), which captures this approximately stable behaviour. We develop a system of ordinary differential equations that approximate the number of infected individuals in the QSD for arbitrary contact networks and parameter values. When the epidemic level is high, these QSD approximations coincide with the existing approximation methods. However, as we approach the epidemic threshold, the models deviate, with these models following the QSD and the existing methods approaching the all susceptible state. Through consistently approximating the QSD, the proposed methods provide a more robust link to the stochastic models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11538-021-00964-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!