Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ability of the human body to regain balance after being externally perturbed is important in the maintenance of vertical posture. The goal of this study was to investigate trunk and leg muscle response to external perturbation while sitting on a stool with varying seat inclinations. Ten healthy subjects were required to receive a perturbation applied to the upper body while sitting on an adjustable stool with 0°, 10° forward or 10° backward inclination of the seat and without footrest and leg support. Electromyographic activities of the trunk and leg muscles and center of pressure displacements were recorded and analyzed during the anticipatory (APA) and compensatory (CPA) phases of postural control. APAs and CPAs were generated in response to an external perturbation. Delays in the onset of anticipatory muscle activity were seen when seated on the inclined seat compared to sitting on the horizontal seat (p < 0.05). To maintain balance after a perturbation, participants activated the trunk and thigh muscles, the activity of which was modulated to a greater degree than that of leg muscles. Moreover, they utilized co-contraction of muscles as the main mechanism of balance control in sitting. Furthermore, there was no effect of a seat inclination on COP displacements. The outcome provides a background for future investigations of the effect of seat inclination on control of balance in sitting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00221-021-06270-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!