Folate metabolism can be an effective target for cancer treatment. However, standard cell culture conditions utilize folic acid, a non-physiological folate source for most tissues. We find that the enzyme that couples folate and methionine metabolic cycles, methionine synthase, is required for cancer cell proliferation and tumour growth when 5-methyl tetrahydrofolate (THF), the major folate found in circulation, is the extracellular folate source. In such physiological conditions, methionine synthase incorporates 5-methyl THF into the folate cycle to maintain intracellular levels of the folates needed for nucleotide production. 5-methyl THF can sustain intracellular folate metabolism in the absence of folic acid. Therefore, cells exposed to 5-methyl THF are more resistant to methotrexate, an antifolate drug that specifically blocks folic acid incorporation into the folate cycle. Together, these data argue that the environmental folate source has a profound effect on folate metabolism, determining how both folate cycle enzymes and antifolate drugs impact proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8608285PMC
http://dx.doi.org/10.1038/s42255-021-00486-5DOI Listing

Publication Analysis

Top Keywords

methionine synthase
12
folate
12
folate metabolism
12
folic acid
12
folate source
12
5-methyl thf
12
folate cycle
12
cancer cell
8
cell proliferation
8
methionine
4

Similar Publications

Methionine sulfoximine (MSO) is a compound originally discovered as a byproduct of agene-based milled flour maturation. MSO irreversibly inhibits the astrocytic enzyme glutamine synthase (GS) but also interferes with the transport of glutamine (Gln) and of glutamate (Glu), and γ-aminobutyric acid (GABA) synthesized within the Glu/Gln-GABA cycle, in this way dysregulating neurotransmission balance in favor of excitation. No wonder that intraperitoneal administration of MSO has long been known to induce behavioral and/or electrographic seizures.

View Article and Find Full Text PDF

Effects of vitamin B supply on cellular processes of the facultative vitamin B consumer .

Appl Environ Microbiol

January 2025

Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.

Vitamin B (cobalamin, herein B) is a key cofactor for most organisms being involved in essential metabolic processes. In microbial communities, B is often scarce, largely because only few prokaryotes can synthesize B and are thus considered B-prototrophs. B-auxotrophy is mostly manifested by the absence of the B-independent methionine synthase, MetE.

View Article and Find Full Text PDF

Impact of Varicocele on The Expression of Testicular Enzymes Involved in The Transsulfuration Pathway.

Int J Fertil Steril

January 2025

Department of Reproductive Biotechnology, Reproductive Biomedicine Research Centre, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. Email:

Background: Oxidative aggression is a hallmark of varicocele and may depend on decreased reactive ability of the endogenous antioxidant system following heat stress. We aimed to investigate the underlying mechanisms. Therefore, the expression of the main enzyme proteins involved in the generation of endogenous antioxidant power, cystathionine beta-synthase (CBS), cystathionine gamma-lyase (CSE), heme oxygenase (HO-1), and also, some of the metabolites (methionine, homocysteine, taurine and vitamin B6) reporting on their activity was investigated using a surgical varicocele model in rats.

View Article and Find Full Text PDF

Analysis of enzyme kinetics of fungal methionine synthases in an optimized colorimetric microscale assay for measuring cobalamin-independent methionine synthase activity.

Enzyme Microb Technol

January 2025

Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, Lyngby DK-2800 Kgs, Denmark. Electronic address:

Aspergillus spp. and Rhizopus spp., used in solid-state plant food fermentations, encode cobalamin-independent methionine synthase activity (MetE, EC 2.

View Article and Find Full Text PDF

Rice transcription factor bHLH25 confers resistance to multiple diseases by sensing HO.

Cell Res

January 2025

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China.

Hydrogen peroxide (HO) is a ubiquitous signal regulating many biological processes, including innate immunity, in all eukaryotes. However, it remains largely unknown that how transcription factors directly sense HO in eukaryotes. Here, we report that rice basic/helix-loop-helix transcription factor bHLH25 directly senses HO to confer resistance to multiple diseases caused by fungi or bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!