Quantum emitters (QEs) in two-dimensional transition metal dichalcogenides (2D TMDCs) have advanced to the forefront of quantum communication and transduction research. To date, QEs capable of operating in O-C telecommunication bands have not been demonstrated in TMDCs. Here we report site-controlled creation of telecom QEs emitting over the 1080 to 1550 nm telecommunication wavelength range via coupling of 2D molybdenum ditelluride (MoTe) to strain inducing nano-pillar arrays. Hanbury Brown and Twiss experiments conducted at 10 K reveal clear photon antibunching with 90% single-photon purity. The photon antibunching can be observed up to liquid nitrogen temperature (77 K). Polarization analysis further reveals that while some QEs display cross-linearly polarized doublets with ~1 meV splitting resulting from the strain induced anisotropic exchange interaction, valley degeneracy is preserved in other QEs. Valley Zeeman splitting as well as restoring of valley symmetry in cross-polarized doublets are observed under 8 T magnetic field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604946 | PMC |
http://dx.doi.org/10.1038/s41467-021-27033-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!