Hybridized periodic mesoporous organosilica (PMO) nanoparticles are expected to provide a multifunctional theranostic platform for precision medicine by combining the advantages of different organic and inorganic components. In this work, double-shell-structured PMO nanotheranostics composed of ethane- and thioether-bridged organosilica shells were synthesized. Gold colloids were generated in situ by the thioether groups on the inner shell. The obtained double-shell PMO@Au (DSPA) has uniform size, large surface areas, ordered mesochannels and photothermal conversion capability. After being encapsulated with perfluorohexacene (PFH), DSPA-PFH produced a strong ultrasound signal upon laser irradiation due to the phase transit of PFH during hyperthermia. DSPA-PFH showed enhanced photothermal therapeutic efficacy, great ultrasound contrast, and minimal toxicity both in vitro and in vivo. These results demonstrated the distribution of different organosilica could be delicately adjusted in hybridized PMO nanoparticles. Furthermore, it showed the potential of using hybridized PMO nanoparticles as a theranostic platform for biomedical applications by combining unique characteristics of different organosilica through rational design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.11.019 | DOI Listing |
J Mater Chem B
December 2024
ICGM, University of Montpellier, UMR-CNRS 5253, 34293 Montpellier, France.
We report the synthesis of multifunctional periodic mesoporous organosilica nanoparticles (PMO NPs) with substantial two-photon absorption properties and targeting capability for two-photon excitation fluorescence (TPEF) and photodynamic therapy (TPE-PDT). Prepared using an adapted sol-gel synthesis, the nanoplatforms integrated two silylated chromophores in their three-dimensional matrix to maximize non-radiative Förster resonance energy transfer from a high two-photon absorption fluorophore donor to a porphyrin derivative acceptor, leading to an enhanced generation of reactive oxygen species. Combinations of biodegradable and non-biodegradable bis(triethoxysilyl)alkoxysilanes were employed for the synthesis of the NPs, and the corresponding photophysical studies revealed high efficiency levels of FRET.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran. Electronic address:
Background: Periodic mesoporous organosilicas (PMOs) are a new class of organic-inorganic hybrid materials with high surface area, narrow pore size distribution, high functional group loading, and tunable functional groups. In contrast to other porous organosilicate materials, PMOs show a uniform distribution of organic groups inside their framework walls. They are synthesized by condensing bis-silylated organic precursors around a surfactant template.
View Article and Find Full Text PDFPlants (Basel)
October 2024
College of Agriculture, Tarim University, Alar 843300, China.
Acta Biomater
December 2024
School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, PR China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, PR China. Electronic address:
Nanoparticle-based photo-immunotherapy has become an attractive strategy to eliminate tumors and activate host immune responses. However, the therapeutic efficacy is heavily restricted by low tumoral penetration and immunosuppressive tumor microenvironment (TME). Herein, near infrared laser (NIR)-propelled Janus nanomotors were presented for deep tumoral penetration, photothermal tumor ablation and photothermal-triggered augmented immunotherapy.
View Article and Find Full Text PDFBiomater Adv
January 2025
NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznań, Poland.
Cadmium-free and NIR fluorescent QDs are promising candidates for bio-application. Thus, we present the synthesis of ternary ZnCuInS/ZnS (ZCIS/ZnS) quantum dots (QDs) where the molar variation of Cu/Zn of the precursors was used to tune the optical and structural properties. QDs with Cu/Zn molar ratio of 2/1 passivated with ZnS exhibited the best optical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!