Uniform H-CdS@NiCoP core-shell nanosphere for highly efficient visible-light-driven photocatalytic H evolution.

J Colloid Interface Sci

Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, Sichuan, China.

Published: February 2022

Constructing highly efficient and cost-effective photocatalyst system has been a big challenge for photocatalysis. Herein, CdS nanosphere (N-CdS), hollow CdS (H-CdS) and a series of H-CdS@NiCoP core-shell nanospheres have been successfully prepared via a facile hydrothermal method. The activity test showed that H-CdS exhibited higher photocatalytic activity (3.34 mmol gh) compared with N-CdS (0.99 mmol gh) under visible light irradiation (λ ≥ 420 nm), suggesting that hollow structure could effectively improve photocatalytic activity. Moreover, the H-CdS@NiCoP-7 wt% displayed a maximum photocatalytic H evolution rate of 13.47 mmol gh, which was about 4 times and 2.5 times higher than that of pristine H-CdS and H-CdS@Pt-3 wt%, respectively. Furthermore, H-CdS@NiCoP-7 wt% exhibited a good stability during 20 h test. The physicochemical properties were characterized by XRD, SEM, TEM, XPS, UV-vis DRS, PL and photoelectrochemical technique. The results showed that NiCoP addition can construct p-n junction with H-CdS and effectively promote the charge transfer from CdS to NiCoP, which improved the photocatalytic hydrogen evolution activity. This work revealed that NiCoP could react as an excellent co-catalyst for enhancing H-CdS photocatalytic activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2021.10.190DOI Listing

Publication Analysis

Top Keywords

photocatalytic activity
12
h-cds@nicop core-shell
8
highly efficient
8
photocatalytic evolution
8
photocatalytic
6
h-cds
5
activity
5
uniform h-cds@nicop
4
core-shell nanosphere
4
nanosphere highly
4

Similar Publications

NH-MIL-125(Ti) and its functional nanomaterials - a versatile platform in the photocatalytic arena.

Nanoscale

January 2025

Centre for Nano Science and Nano Technology, S 'O' A (Deemed to be University), Bhubaneswar-751 030, Odisha, India.

Titanium (Ti)-based MOFs are promising materials known for their porosity, stability, diverse valence states, and a lower conduction band (CB) than Zr-MOFs. These features support stable ligand-to-metal charge transfer (LMCT) transitions under photoirradiation, enhancing photocatalytic performance. However, Ti-MOF structures remain a challenge owing to the highly volatile and hydrophilic nature of ionic Ti precursors.

View Article and Find Full Text PDF

Putting Charge Transfer Degree as a Bridge Connecting Surface-Enhanced Raman Spectroscopy and Photocatalysis.

Angew Chem Int Ed Engl

January 2025

Jilin University, State Key Laboratory of Supramolecular Structure and Materials, 2699 Qianjin Street, 130012, Changchun, CHINA.

To date, few systematic approach has been established for predicting catalytic performance by analyzing the spectral information of molecules adsorbed on photocatalyst surfaces. Effective charge transfer (CT) between the semiconductor photocatalysts and surface-absorbed molecules is essential for enhancing catalytic activity and optimizing light energy utilization. This study aimed to validate the surface-enhanced Raman spectroscopy (SERS) based on the CT enhancement mechanism in investigating the CT process during semiconductor photocatalytic C-C coupling model reactions.

View Article and Find Full Text PDF

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones.

View Article and Find Full Text PDF

Coordination-driven metallo-supramolecular polymers hold significant potential as highly efficient catalysts for photocatalytic CO reduction, owing to the covalent integration of the light harvesting unit, catalytic center and intrinsic hierarchical nanostructures. In this study, we present the synthesis, characterization, and gelation behaviour of a novel low molecular weight gelator (LMWG) integrating a benzo[1,2-:4,5-']dithiophene core with terpyridine (TPY) units alkyl amide chains (TPY-BDT). The two TPY ends of the TPY-BDT unit efficiently chelate with metal ions, enabling the formation of a metallo-supramolecular polymer that brings together the catalytic center and a photosensitizer in close proximity, maximizing catalytic efficiency for CO reduction.

View Article and Find Full Text PDF

Pressure-Induced Engineering of Surface Oxygen Vacancies on Metal Oxides for Heterogeneous Photocatalysis.

J Am Chem Soc

January 2025

State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.

Oxygen vacancies (OVs) spatially confined on the surface of metal oxide semiconductors are advantageous for photocatalysis, in particular, for O-involved redox reactions. However, the thermal annealing process used to generate surface OVs often results in undesired bulk OVs within the metal oxides. Herein, a high pressure-assisted thermal annealing strategy has been developed for selectively confining desirable amounts of OVs on the surface of metal oxides, such as tungsten oxide (WO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!