The exploitation of efficient electrocatalyst is significantly important for degradation of refractory organic pollutants. Herein, a novel Ti/CoTiO/Ce-PbO composite electrocatalyst (abbreviated as CTO/CP) is successfully constructed via facile consecutive immersion pyrolysis and electro-deposition method and then systematically characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Fourier Transform infrared spectroscopy (FT-IR), energy dispersive spectroscopy (EDS) and near infrared chemical imaging (NIR-CI). Importantly, the electrochemical measurements demonstrate that the CTO/CP possesses numerous prominent properties such as lower charge transfer resistance, larger electroactive area, higher oxygen evolution potential than those of the pristine Ti/CoTiO (CTO) and Ti/Ce-PbO (CP). Thereby, the CTO/CP exhibits an enhanced electrocatalytic degradation performance with the degradation efficiency as high as 90.0% and COD removal rate of 88.3% at 180 min for the optimal CTO/CP (denoted as 10 layers of CTO and 1 h electrodeposition of CP), in which the ·OH is the major reactive species. Additionally, the optimal CTO/CP also shows a higher ICE/ACE together with lower EEC and desirable stability, universal applicability for many different dyes and reusability. Overall, this work offers a promising approach for enhancing the electrocatalytic properties of CTO via introducing CP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.11.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!