Quantitative characterization and genetic diversity associated with N-cycle pathways in urban rivers with different remediation techniques.

Sci Total Environ

The State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China. Electronic address:

Published: January 2022

The nitrate reduction contributions of denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) remain largely unknown especially in the context of river remediation. In this research, the quantitative differentiation of these three nitrate-reduction processes with different remediation conditions was done by the joint use of microbial analysis and nitrogen isotope-tracing. The experiments were done in simulated river systems with 100-day operations. The results of isotope-tracing showed that the respective N-removal contribution of denitrification was 85.88%-92.46% and 83.49%-84.73% in urban river with aeration and addition of Ca(NO), whereas anammox became the same important (contribution of 49.35%-57.85%) with denitrification for nitrogen removal at a high C/N (Chemical oxygen demand/total nitrogen) ratio of 20. Besides, DNRA only occurred at a C/N ratio of 10 with high-level ammonium accumulation (11.20 ± 0.61 mg/L). Microbial analyses indicated that Ca(NO) injection could promote not only the relative abundance of Proteobacteria (from 47.66% to 59.52%) but also the abundance of hzsB (from (4.66 ± 0.40) × 10 copies·g to (2.66 ± 0.12) × 10 copies·g). Moreover, Ca(NO) injection showed significantly positive correlation with Candidatus Jettenia of hzsB and Thiobacillus of all the denitrification functional genes including narG, norB, nosZ and nirS. The C/N ratio showed significantly positive correlation with Azoarcus of nirS (r = 0.941, p < 0.01) and Alloactinosynnema of hzsB (r = 0.941, p < 0.01). It was worth noting that Thiobacillus dominated in N-transformation processes, which underlined the need for the coupling of N transformation with other elements such as sulfur for better understanding and manipulating N cycling in urban rivers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.150235DOI Listing

Publication Analysis

Top Keywords

nitrate reduction
8
c/n ratio
8
cano injection
8
positive correlation
8
quantitative characterization
4
characterization genetic
4
genetic diversity
4
diversity associated
4
associated n-cycle
4
n-cycle pathways
4

Similar Publications

Design Criteria for Active and Selective Catalysts in the Nitrogen Oxidation Reaction.

ACS Phys Chem Au

January 2025

University of Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Universitätsstraße 5, Essen 45141, Germany.

The direct conversion of dinitrogen to nitrate is a dream reaction to combine the Haber-Bosch and Ostwald processes as well as steam reforming using electrochemistry in a single process. Regrettably, the corresponding nitrogen oxidation (NOR) reaction is hampered by a selectivity problem, since the oxygen evolution reaction (OER) is both thermodynamically and kinetically favored in the same potential range. This opens the search for the identification of active and selective NOR catalysts to enable nitrate production under anodic reaction conditions.

View Article and Find Full Text PDF

Decrypting the phylogeny and metabolism of microbial dark matter in green and red Antarctic snow.

ISME Commun

January 2025

State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.

Antarctic snow harbors diverse microorganisms, including pigmented algae and bacteria, which create colored snow patches and influence global climate and biogeochemical cycles. However, the genomic diversity and metabolic potential of colored snow remain poorly understood. We conducted a genome-resolved study of microbiomes in colored snow from 13 patches (7 green and 6 red) on the Fildes Peninsula, Antarctica.

View Article and Find Full Text PDF

Edaphic factors mediate the response of nitrogen cycling and related enzymatic activities and functional genes to heavy metals: A review.

Ecotoxicol Environ Saf

January 2025

College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China.

Soil nitrogen (N) transformations control N availability and plant production and pose environmental concerns when N is lost, raising issues such as soil acidification, water contamination, and climate change. Former studies suggested that soil N cycling is chiefly regulated by microbial activity; however, emerging evidence indicates that this regulation is disrupted by heavy metal (HM) contamination, which alters microbial communities and enzyme functions critical to N transformations. Environmental factors like soil organic carbon, soil texture, water content, temperature, soil pH, N fertilization, and redox status play significant roles in modulating the response of soil N cycling to HM contamination.

View Article and Find Full Text PDF

The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.

View Article and Find Full Text PDF

Thiocyanate (SCN) is a highly toxic reducing inorganic compound commonly found in various nitrogen-rich wastewater and is also a promising electron donor for mixotrophic denitrification. However, its extent of involvement in mixotrophic denitrification under conditions of carbon limitation or excess remains unclear. In this study, five reactors were constructed to investigate the participation and microbial mechanisms of SCN in mixotrophic denitrification under high C/N and low C/N conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!