Kinomic comparison of snap frozen and ex vivo-cultured head and neck tumors.

Oral Oncol

Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany. Electronic address:

Published: December 2021

Objectives: The use of primary tumor tissue in experimental and pre-clinical cancer research is becoming increasingly important. Especially the use of tissue slice cultures of tumor specimen, so called ex vivo cultures or tumor explants, promises functional analysis under approximate physiological conditions. This includes screening and testing of targeted therapeutics directed against deregulated protein kinases. However, it is unclear if ex vivo cultures indeed represent the in situ situation especially with respect to very sensitive and transient molecular processes such as kinase dependent signaling. We now asked here, if and to what extent ex vivo culturing affects kinase activity.

Materials And Methods: We analyzed the activity of protein tyrosine kinases (PTK) using functional kinome profiling of either snap frozen or ex vivo-cultured tumor tissue samples of head and neck cancer patients.

Results: Although we observed a quantitative decline in overall kinase activity after 24 h or 48 h of ex vivo cultivation, we most importantly noticed that the signaling characteristics were conserved in most samples; approximately two thirds of all ex vivo-cultured samples displayed a signaling pattern which was qualitatively comparable to the parental tumor. We could also demonstrate kinase inhibition by treatment of ex vivo slice cultures with the multi-kinase inhibitor staurosporine, although higher concentrations were needed compared to cell cultures.

Conclusion: We here demonstrate that the tyrosine kinase dependent signaling is conserved under exvivo culturing conditions in the majority of samples, which highlights the power of this method in experimental and pre-clinical cancer research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.oraloncology.2021.105603DOI Listing

Publication Analysis

Top Keywords

snap frozen
8
frozen vivo-cultured
8
head neck
8
tumor tissue
8
experimental pre-clinical
8
pre-clinical cancer
8
slice cultures
8
cultures tumor
8
vivo cultures
8
kinase dependent
8

Similar Publications

Protocol for the isolation of brain microvessels and visualization of RNA fluorescence in mice and humans.

STAR Protoc

January 2025

University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL, USA; Institute of Physiotherapy and Health Sciences, the Blood-Brain Barrier Research Center, the Jerzy Kukuczka Academy of Physical Education, Katowice, Poland. Electronic address:

Here, we present a protocol for isolating microvessels from fresh or snap-frozen brain tissue from mice and humans, followed by visualization of RNA utilizing RNAscope hybridization for quantification of mRNA. We describe the steps for sample preparation and isolation, fixation, and hybridization. This protocol was specifically designed to integrate with RNAscope in situ hybridization.

View Article and Find Full Text PDF

: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear.

View Article and Find Full Text PDF

Background And Aims: Recently, demands towards identifying various molecules in support of stress detection and potential clinical utilization are dramatically increasing. Moreover, the accuracy with which researchers quantify these informative molecules is now far more improved when compared to the past. As RNA or protein markers are conventionally detected via repeated invasive procedures from blood, it is critical to develop secure technologies to obtain the desired information via less stressful methodologies, such as saliva collection.

View Article and Find Full Text PDF

Introduction: Treatment with Sunitinib, a potent multitargeted receptor tyrosine kinase inhibitor (TKI) has increased the progression-free survival (PFS) and overall-survival (OS) of patients with metastasized renal cell carcinoma (mRCC). With modest OS improvement and variable response and toxicity predictive and/or prognostic biomarkers are needed to personalize patient management: Prediction of individual TKI therapy response and resistance will increase successful treatment outcome while reducing unnecessary drug use and expense. The aim of this study was to investigate whether kinase activity analysis can predict sunitinib response and/or toxicity using tissue samples obtained from primary clear cell RCC (ccRCC) from a cohort of clinically annotated patients with mRCC receiving sunitinib as first-line treatment.

View Article and Find Full Text PDF

Breast augmentations, commonly performed for aesthetic or medical reasons, often use silicone (polydimethylsiloxane [PDMS]) implants. Some patients develop complications like capsular contracture, where scar tissue forms around the implant. Previously, we used stimulated Raman scattering (SRS) microscopy to detect and quantify silicone in stained capsule tissue, finding a correlation between silicone amount and contracture severity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!