Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Technologies are needed to address contamination with energetic compounds at military installations. This research developed and evaluated novel and sustainable materials that can be used to remove munition constituents (MC) from stormwater runoff. Initial work focused on 3-nitro-1,2,4-triazol-5-one (NTO), as it is both highly soluble and ionized at environmentally relevant pH values. Screening cellulosic materials indicated that cationized (CAT) versions of pine shavings (pine, henceforth) and burlap (jute) demonstrated >70% removal of NTO from artificial surface runoff. CAT materials also demonstrated >90% removal of the anionic propellant perchlorate. NTO removal (~80%) by CAT pine was similar across initial pH values from 4 to 8.5 S.U. An inverse relationship was observed between NTO removal and the concentration of the major anions chloride, nitrate, and sulfate due to competition for anion binding sites. Sorption isotherms were performed using a mixture of the three primary legacy explosives (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), hexahydro-1,3,5-trinitro-s-triazine (RDX), 2,4,6-trinitrotoluene (TNT)), the three insensitive MC (nitroguanidine (NQ), NTO, 2,4-dinitroanisole (DNAN)), and perchlorate. Isotherm results indicated that effective removal of both legacy and insensitive MC would best be achieved using a mixture of peat moss plus one or more of the cationized cellulosic materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.127335 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!