Background: Behavioral sensitization, thought to underlie some aspects of drug dependence, is typically measured as increased locomotion in response to repeated administration of a drug. The study aimed to investigate the (m-CF3-PhSe) effects on the acquisition, withdrawal, and re-exposure phases of morphine-induced behavioral locomotor sensitization.
Methods: Swiss male mice were treated with saline or morphine at 10 mg/kg twice a day for 3 days; those of the morphine group were kept in the morphine withdrawal period (5 days). On day 9, mice were re-exposed to morphine. (m-CF3-PhSe) (10 mg/kg) or vehicle was administered at all phases of morphine protocol, and mice performed locomotor activity test. Oxidative stress markers and the levels of opioid, dopamine, and glutamate receptors were determined in samples of the cerebral cortex. (m-CF3-PhSe) administered at all phases of protocol attenuated morphine-induced locomotor sensitization.
Results: Mice exposed to morphine showed reduced weight gain and increased locomotor activity, but (m-CF-PhSe) treatment attenuates the weight gain and behavioral hyperlocomotion effects. (m-CF3-PhSe), independent of the administration phase, modulated the increase of opioidergic (MOR, DOR, KOR) and glutamatergic (NMDA 2A and 2B) protein contents and attenuated redox imbalance in the cerebral cortex of mice exposed to morphine. However, (m-CF3-PhSe) did not modulate cortical protein levels of dopaminergic (D1 and D2) receptors in the acquisition phase of morphine-induced locomotor sensitization protocol.
Conclusion: (m-CF-PhSe) was effective against the behavioral and molecular alterations caused by morphine at all phases of locomotor sensitization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtemb.2021.126889 | DOI Listing |
Front Mol Neurosci
December 2024
Laboratory of Neuropsychiatry, Psychiatric Centre Copenhagen, Mental Health Services in the Capital Region of Denmark and University of Copenhagen, Copenhagen, Denmark.
Objective: Acetylcholine modulates the activity of the direct and indirect pathways within the striatum through interaction with muscarinic M and M receptors. M receptors are uniquely positioned to regulate plasticity within the direct pathway and play a substantial role in reward and addiction-related behaviors. However, the role of M receptors on cholinergic neurons has been less explored.
View Article and Find Full Text PDFTransl Psychiatry
December 2024
Center for Substance Abuse Research, Temple University, Philadelphia, PA, USA.
Recent progress in psychiatric research has highlighted neuroinflammation in the pathophysiology of opioid use disorder (OUD), suggesting that heightened immune responses in the brain may exacerbate opioid-related mechanisms. However, the molecular mechanisms resulting from neuroinflammation that impact opioid-induced behaviors and transcriptional pathways remain poorly understood. In this study, we have begun to address this critical knowledge gap by exploring the intersection between neuroinflammation and exposure to the opioid heroin, utilizing lipopolysaccharide (LPS)-induced neuroinflammation, to investigate transcriptional changes in the nucleus accumbens (NAc), an essential region in the mesolimbic dopamine system that mediates opioid reward.
View Article and Find Full Text PDFPharmacol Biochem Behav
December 2024
Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA. Electronic address:
Mu-opioid receptors (MORs) in the amygdala and striatum are important in addictive and rewarding behaviors. The transcription factor Foxp2 is a genetic marker of intercalated (ITC) cells in the amygdala and a subset of striatal medium spiny neurons (MSNs), both of which express MORs in wild-type mice and are neuronal subpopulations of potential relevance to alcohol-drinking behaviors. For the current series of studies, we characterized the behavior of mice with genetic deletion of the MOR gene Oprm1 in Foxp2-expressing neurons (Foxp2-Cre/Oprm1).
View Article and Find Full Text PDFNeuropharmacology
March 2025
Department of Pharmacology and Physiology, Drexel University College of Medicine, USA. Electronic address:
Psychopharmacology (Berl)
November 2024
School of Psychology, Victoria University of Wellington, Wellington, New Zealand.
Rationale: Tobacco monoamine oxidase (MAO) inhibitors have long been suspected of influencing tobacco dependence, but direct evidence of their effects has been difficult to obtain. Recently we have identified two new groups of monoamine oxidase inhibitors, hydroquinones and polyunsaturated fatty acids (linoleic and linolenic acid), abundant in tobacco smoke.
Objectives: To test, in relevant animal models, whether the combined effect of these inhibitors is sufficient to affect addictive responses to nicotine.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!