Gadolinium-based contrast agents (GBCAs) are frequently used for magnetic resonance imaging to improve image contrast. These inert complexes are excreted unmetabolized from the human body and pass through wastewater treatment plants almost unaffected, leading to a significant release of anthropogenic Gd into the environment. However, long-term ecotoxicological effects of GBCAs are mainly unknown and thus powerful methods of speciation analysis are required to monitor their distribution and fate in aquatic systems. In this work, a rapid and efficient monitoring method was developed utilizing a fully automated single platform system for total metal analysis and syringe-driven chromatography in combination with inductively coupled plasma-mass spectrometry (ICP-MS). An anion-exchange chromatography (IC) method was developed and applied to achieve a rapid separation and sensitive detection of the five complexes Gd-HP-DO3A, Gd-BT-DO3A, Gd-DOTA, Gd-DTPA, and Gd-BOPTA that are commonly administered in the European Union. Furthermore, the use of an automated inline-dilution function allowed a fast-external calibration from single stock standards. A chromatographic run time of less than 2 min and species-specific detection limits between 11 and 19 pmol L on a quadrupole ICP-MS proved to be competitive compared to previously published methods, but without the use of aerosol desolvation and/or sector field ICP-MS to enhance sensitivity. The automated IC-ICP-MS method was applied for quantitative GBCA monitoring in a multitude of surface water samples that were obtained in the German state of North Rhine-Westphalia. The complexes Gd-HP-DO3A, Gd-BT-DO3A, and Gd-DOTA, were detected and quantified. In addition, the occurrence of an unidentified Gd species was observed for one of the sampled river systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2021.117836 | DOI Listing |
Tomography
December 2024
Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Using a pediatric-focused lens, this review article briefly summarizes the presentation of several demyelinating and neuroinflammatory diseases using conventional magnetic resonance imaging (MRI) sequences, such as T1-weighted with and without an exogenous gadolinium-based contrast agent, T2-weighted, and fluid-attenuated inversion recovery (FLAIR). These conventional sequences exploit the intrinsic properties of tissue to provide a distinct signal contrast that is useful for evaluating disease features and monitoring treatment responses in patients by characterizing lesion involvement in the central nervous system and tracking temporal features with blood-brain barrier disruption. Illustrative examples are presented for pediatric-onset multiple sclerosis and neuroinflammatory diseases.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Laboratory of Applied Electrochemistry, Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milan, Italy.
Magnetic resonance imaging (MRI) is a technique that employs strong magnetic fields and radio frequencies to generate detailed images of the body's interior. In oncology patients, gadolinium-based contrast agents (GBCAs) are frequently administered to enhance the visualization of tumors. Those contrast agents are gadolinium chelates, characterized by high stability that prevents the release of the toxic gadolinium ion into the body.
View Article and Find Full Text PDFInvest Radiol
October 2024
From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).
The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.
View Article and Find Full Text PDFInvest Radiol
October 2024
From the Research and Innovation Department, Guerbet, Roissy, France (I.M., M.-C.D.G., J.-F.M., A.D., Y.B., N.D., I.S., G.B., C.M., C.F., O.R., S.C.); General, Organic, and Biomedical Chemistry Unit, NMR and Molecular Imaging Laboratory, University of Mons, Mons, Belgium (C.H., S.L.); and Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany (C.K., T.J.M., U.K.).
Objectives: Gadopiclenol is a q = 2 pyclen gadolinium-based contrast agent (GBCA) recently approved by the Food and Drug Administration, European Medicines Agency, and other European countries. The aim of this report is to demonstrate its stability in multiple stressed in vitro conditions and in vivo, in rat kidney, while maintaining its higher relaxivity compared with conventional GBCAs on the market.
Materials And Methods: Both gadopiclenol and its chemical precursor Pi828-Gd were characterized and compared with q = 1 gadolinium (Gd) complexes.
J Cereb Blood Flow Metab
December 2024
Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
This study presents the first in vivo measurement of transcytolemmal water exchange in the brain using a novel Magnetic Resonance technique. We extend previous applications of Chemical Exchange Saturation Transfer (CEST) to examine water exchange across cellular membranes in late-stage chicken embryo brains. The immature blood-brain barrier at this stage allows Gadolinium-Based Contrast Agents (GBCAs) to penetrate the brain's interstitial space, sensitizing the CEST effect to water exchange between intra- and extracellular environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!