To improve the efficiency of methane production from chicken manure (CM) anaerobic digestion, the mechanism of coal slime (CS) as an additive on methane production characteristics were investigated. The results showed that adding an appropriate amount of CS quickened the start of the fermentation and effectively increased the methane yield. In addition, the pH changed in a stable manner in the liquid phase, and the concentrations of total ammonia nitrogen (TAN) and free ammonia nitrogen (FAN) were reduced. Moreover, organic matter was decomposed and volatile fatty acids (VFAs) were consumed effectively. The abundance of Bacteroides in the bacterial community and Methanosarcina in the archaea was increased. In addition, the reduction of CO was the main methanogenic pathway, and adding CS raised the abundance of genes for key enzymes in metabolic pathways during methane metabolism. The results provide a novel method for the efficient methane production from CM.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2021.126226DOI Listing

Publication Analysis

Top Keywords

methane production
12
chicken manure
8
coal slime
8
slime additive
8
ammonia nitrogen
8
methane
6
biochemical mechanism
4
mechanism enhancing
4
enhancing conversion
4
conversion chicken
4

Similar Publications

This research was carried out to assess the concentrations of carbon monoxide (CO) and formaldehyde (HCHO) in Edo State, Southern Nigeria, using remote sensing data. A secondary data collection method was used for the assessment, and the levels of CO and HCHO were extracted annually from Google Earth Engine using information from Sentinel-5-P satellite data (COPERNISCUS/S5P/NRTI/L3_) and processed using ArcMap, Google Earth Engine, and Microsoft Excel to determine the levels of CO and HCHO in the study area from 2018 to 2023. The geometry of the study location is highlighted, saved and run, and a raster imagery file of the study area is generated after the task has been completed with a 'projection and extent' in the Geographic Tagged Image File Format (.

View Article and Find Full Text PDF

In this work, within the framework of a self-consistent model of arc discharge, a simulation of plasma parameters in a mixture of argon and methane was carried out, taking into account the evaporation of the electrode material in the case of a refractory and non-refractory cathode. It is shown that in the case of a refractory tungsten cathode, almost the same methane conversion rate is observed, leading to similar values in the density of the main methane conversion products (C, C, H) at different values of the discharge current density. However, with an increase in the current density, the evaporation rate of copper atoms from the anode increases, and a jump in the - characteristic is observed, caused by a change in the plasma-forming ion.

View Article and Find Full Text PDF

This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.

View Article and Find Full Text PDF

Reducing enteric methane emissions from livestock is a key environmental challenge, as methane is a major pollutant. The complexity of animal biology and diverse diet compositions make it difficult to develop strategy to control methane production. This study examined the use of plant phenolic extracts of Madhuca longifolia (ML-7) as a feed additive combined with various ruminant diets and dosages to find an effective supplement to reduce methane emissions.

View Article and Find Full Text PDF

Excess of trace elements (TE) significantly alters the performances of anaerobic digestors (AD). Due to interactions with organic matter in particular, only a small fraction of TE can effectively interact with the biomass. However, assessing the bioavailable fraction of TE remains an issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!