A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stepwise freezing-thawing treatment promotes short-chain fatty acids production from waste activated sludge. | LitMetric

Stepwise freezing-thawing treatment promotes short-chain fatty acids production from waste activated sludge.

Sci Total Environ

Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.

Published: April 2022

Waste activated sludge (WAS), as the byproducts of wastewater treatment plants, has been greatly produced. With high cost and environmental risk of WAS disposal, to explore a low-cost and environment-friendly technology has been a great challenge. Considering that WAS is a collection of organic matters, anaerobic fermentation has been selected as a sustainable way to simultaneously recover resources and reduce environmental pollution. To recover short-chain fatty acids (SCFAs) has gained great concern because of the high value-added application and high-efficiency production process. Considering the temperature in some areas of the world can reach to below 0 °C, this study proposed an efficient strategy, i.e., stepwise freezing and thawing treatment, to promote SCFAs production. The maximal production of SCFAs, i.e., 246 mg COD/g volatile suspended solid, was obtained with the shortened retention time of five days. Mechanistic studies showed that the solubilization of both extracellular polymeric substances (EPSs) and microbial cells could be accelerated, with the EPSs removal of 58.3% for proteins and 59.0% for polysaccharides. Also, the hydrolysis process was promoted to provide more substrates for subsequent acidogenisis, and the functional microorganisms, such as Romboutsia, Paraclostridium, Macellibacteroides and Conexibacter, were greatly enriched, with a total abundance of 26.2%. Moreover, compared to control, methanogenesis was inhibited at a shortened sludge retention time (e.g., five days), which benefited to the accumulation of SCFAs, but the methane production was increased by 25.2% at a longer sludge retention time (e.g., ten days). Thus, these findings of this work may provide some new solutions for the enhanced resource recovery from WAS, and further for carbon-neutral operation of wastewater treatment plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151694DOI Listing

Publication Analysis

Top Keywords

retention time
12
short-chain fatty
8
fatty acids
8
waste activated
8
activated sludge
8
wastewater treatment
8
treatment plants
8
time days
8
sludge retention
8
production
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!