Low-dimensional photodetectors, in particular those in photoconductive mode, often have extraordinarily high photogain. However, high gain always comes along with a slow frequency response. The gain-bandwidth product (GBP) is a figure of merit to evaluate the performance of a photodetector. Whether the high-gain photoconductors can outperform standard PIN photodiodes in terms of GBP remains an open question. In this article, we derived the analytical transient photoresponses of nanowire photoconductors which were validated with the simulations and experiments. Surprisingly, the fall transients do not follow a simple time-dependent exponential function except for some special cases. Given the analytical photogains that were established previously, we derived the theoretical GBP of high-gain nanowire photoconductors. Analysis of the analytical GBP indicates that nanoscale photoconductors, although having extremely high gain, will never outperform typical PIN photodiodes in terms of GBP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c08331DOI Listing

Publication Analysis

Top Keywords

analytical transient
8
high gain
8
pin photodiodes
8
photodiodes terms
8
terms gbp
8
nanowire photoconductors
8
gbp
5
analytical
4
transient responses
4
responses gain-bandwidth
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!