Much has been learned about the protein coronae and their biological implications within the context of nanomedicine and nanotoxicology. However, no data is available about the protein coronae associated with nanoparticles undergoing spontaneous surface-energy minimization, a common phenomenon during the synthesis and shelf life of nanomaterials. Accordingly, here we employed gold nanoparticles (AuNPs) possessing the three initial states of spiky, midspiky, and spherical shapes and determined their acquisition of human plasma protein coronae with label-free mass spectrometry. The AuNPs collected coronal proteins that were different in abundance, physicochemical parameters, and interactive biological network. The size and structure of the coronal proteins matched the morphology of the AuNPs, where small globular proteins and large fibrillar proteins were enriched on spiky AuNPs, while large proteins were abundant on spherical AuNPs. Furthermore, the AuNPs induced endothelial leakiness to different degrees, which was partially negated by their protein coronae as revealed by confocal fluorescence microscopy, and transwell assays, and signaling pathway assays. This study has filled a knowledge void concerning the dynamic protein corona of nanoparticles possessing an evolving morphology and shed light on their implication for future nanomedicine harnessing the paracellular pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692073 | PMC |
http://dx.doi.org/10.1021/acsami.1c19824 | DOI Listing |
Anal Chem
December 2024
Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
Spherical nucleic acids (SNAs) usually suffer from an undesired protein corona and disrupt the function of nucleic acids (e.g., aptamer), thereby compromising recognition and response to proteins in the biological environment.
View Article and Find Full Text PDFMol Pharm
December 2024
Department of Chemical Engineering, Dankook University, Yongin-si 16890, South Korea.
The adsorption of plasma proteins (human serum albumin, immunoglobulin γ-1, apolipoproteins A-I and E-III) onto polystyrene surfaces grafted with polyethylene glycol (PEG) at different grafting densities is simulated using an all-atom PEG model validated by comparing the conformations of isolated PEG chains with previous simulation and theoretical values. At high PEG density, the grafted PEG chains extend like brushes, while at low density, they significantly adsorb to the surface due to electrostatic attraction between polystyrene amines and PEG oxygens, forming a PEG layer much thinner than its Flory radius. Free energy calculations show that PEGylation can either increase or decrease the binding strength between proteins and surfaces, to an extent dependent on PEG density and specific proteins involved, in agreement with experiments.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
Proteins are some of the most important components in living organisms. When nanoparticles enter a living system, they swiftly interact with proteins to produce the so-called "protein corona", which depicts the adsorption of proteins on large nanoparticles (normally tens to hundreds of nanometers). However, the sizes of small nanoparticles (typically, fluorescent nanomaterials such as quantum dots, noble metal nanoclusters, carbon dots, ) are less than 10 nm, which are comparable or even much smaller than those of proteins.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Division of Medical Physics and Biophysics, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, 8010, Austria.
Background: Selenium (Se) is a vital micronutrient for maintaining homeostasis in the human body. Selenium nanoparticles (SeNPs) have demonstrated improved bioavailability compared to both inorganic and organic forms of Se. Therefore, supplementing with elemental Se in its nano-form is highly promising for biomedical applications related to Se deficiency.
View Article and Find Full Text PDFACS Nano
December 2024
School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Rapid diagnosis of cerebrospinal fluid (CSF) leaks is critical as endoscopic endonasal skull base surgery gains global prominence. Current clinical methods such as endoscopic examination with and without intrathecal injection of fluorescent dye are invasive and rely on subjective judgment by physicians, highlighting the clinical need for label-free point-of-care (POC). However, a viable solution remains undeveloped due to the molecular complexity of CSF rhinorrhea mixed with nasal discharge and the scarcity of specific biomarkers, delaying sensor development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!