Recent advances in photocatalytic remediation of emerging organic pollutants using semiconducting metal oxides: an overview.

Environ Sci Pollut Res Int

Department of Environmental Science, Faculty of Natural Science, JSS Academy of Higher Education and Research, Mysuru, 570015, India.

Published: January 2022

Many untreated and partly treated wastewater from the home and commercial resources is being discharged into the aquatic environment these days, which contains numerous unknown and complex natural and inorganic compounds. These compounds tend to persist, initiating severe environmental problems, which affect human health. Conventionally, physicochemical treatment methods were adopted to remove such complex organic chemicals, but they suffer from critical limitations. Over time, photocatalysis, an advanced oxidation process, has gained its position for its efficient and fair performance against emerging organic pollutant decontamination. Typically, photocatalysis is a green technology to decompose organics under UV/visible light at ambient conditions. Semiconducting nanometal oxides have emerged as pioneering photocatalysts because of large active surface sites, flexible oxidation states, various morphologies, and easy preparation. The current review presents an overview of emerging organic pollutants and their effects, advanced oxidation processes, photocatalytic mechanism, types of photocatalysts, photocatalyst support materials, and methods for improving photodegradation efficiency on the degradation of complex emerging organic pollutants. In addition, the recent reports of metal-oxide-driven photocatalytic remediation of emerging organic pollutants are presented in brief. This review is anticipated to reach a broader scientific community to understand the first principles of photocatalysis and review the recent advancements in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-17361-1DOI Listing

Publication Analysis

Top Keywords

emerging organic
20
organic pollutants
16
photocatalytic remediation
8
remediation emerging
8
advanced oxidation
8
organic
6
emerging
5
advances photocatalytic
4
pollutants
4
pollutants semiconducting
4

Similar Publications

Bipolar Solid-Solution Hosts for Efficient Crystalline Organic Light-Emitting Diodes.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.

Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-10 cm V s).

View Article and Find Full Text PDF

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

The hydrolysis rates of many organic chemicals are accelerated under alkaline conditions by the presence of hydroxide (HO), which is typically assumed to be the predominant species contributing to base-catalyzed hydrolysis in both natural waters and laboratory buffers used in standard protocols. In this study, we demonstrated that weak bases (e.g.

View Article and Find Full Text PDF

Developing new materials capable of the safe and efficient removal of toxic substances has become a research hotspot in the field of materials science, as these toxic substances pose a serious threat to human health, both directly and indirectly. Covalent organic frameworks (COFs), as an emerging class of crystalline porous materials, have advantages such as large specific surface area, tunable pore size, designable structure, and good biocompatibility, which have been proven to be a superior adsorbent design platform for toxic substances capture. This review will summarize the synthesis methods of COFs and the properties and characteristics of typical toxicants, discuss the design strategies of COF-based adsorbents for the removal of toxic substances, and highlight the recent advancements in COF-based adsorbents as robust candidates for the efficient removal of various types of toxicants, such as animal toxins, microbial toxins, phytotoxins, environmental toxins, The adsorption performance and related mechanisms of COF-based adsorbents for different types of toxic substances will be discussed.

View Article and Find Full Text PDF

The elimination of the A' unit from -type Y6-derivatives has led to the development of a new class of -benzodipyrrole (-BDP)-based A-DBD-A-type NFAs. In this work, two new A-DBD-A-type NFAs, denoted as CFB and CMB, are designed and synthesized, where electron-withdrawing fluorine atoms and electron-donating methyl groups are substituted on the benzene ring of the -BDP moiety, respectively. CFB exhibits a blue-shifted absorption spectrum, stronger intermolecular interactions, shorter π-π stacking distances, and more ordered 3D intermolecular packing in the neat and blend films, enabling it to effectively suppress charge recombination in the PM6:CFB device showing a higher PCE of 16.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!