Thermally activated delayed fluorescence (TADF) materials are an essential part of TADF-based organic light-emitting diodes (OLEDs). All the reported methods to improve the performance of TADF materials were focused on achieving a high reverse intersystem crossing rate () and oscillator strength (), but most of them were studies on single molecular states. In this paper, we have discovered a new dimer architecture called the "H-type" like dimer and proved that the "H-type" like dimer is another way to improve the performance of TADF materials by calculation and experiment. The calculated energy levels of excited states only provided 1.72-5.46% relative errors (RE) compare with the measured values, which indicated that the methods we chose were suitable for predicting the properties. The intermolecular interactions of the "H-type" like dimer endow it with much larger and properties than monomer states, proving that the "H-type" like dimer could improve the performance of TADF emitters.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c03044 | DOI Listing |
J Phys Chem B
January 2025
OncoImmunin, Inc., 207A Perry Parkway, Suite 6, Gaithersburg, Maryland 20877, United States.
We have previously found that the presence of an H-type excitonic dimer formed by two fluorophores covalently bound to an oligonucleotide allows the delivery of such a polymer into live cells without inducing toxicity. We are now using time-resolved fluorescence measurements in solution to understand the molecular dynamics of an antisense probe and how pairing with complementary sense strands of various lengths and degrees of complementarity affects the antisense strand's properties. We report that a DNA strand composed of 30 residues and labeled with an H-type excitonic Cyanine-5/Cyanine-5 dimer shows a predominant 1.
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
January 2025
Department of Orthodontic Dentistry, School of Stomatology, The Fourth Military Medical University, State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Xi'an710032, China.
To explore the distribution characteristics of glioma-associated oncogene homolog 1 (Gli1) positive cells during orthodontic tooth movement process and conduct a proteomic analysis of these cells. Forty Gli1-LacZ transgenic mice were used to establish an in orthodontic tooth movement (OTM) model for labeling Gli1 positive cells in Gli1-LacZ transgenic mice (OTM group) and an unforced control group, with tooth movement distance measured using micro-CT. The spatial relationship and distribution characteristics of Gli1 positive cells and H-type vessels of CD31 and endomucin (EMCN) in periodontal tissues were detected by immunofluorescence staining.
View Article and Find Full Text PDFJ Phys Chem B
October 2024
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
The impact of conformational change on the ground and excited states of seven perylene diimide (PDI)-based dimeric systems is examined by introducing longitudinal shift, transverse shift, and rotation of one monomer with respect to another. The minimum energy conformations are compared via an energy decomposition analysis. The heteroatom-substituted dimeric systems, such as B N-embedded PDI, trans-thio-PDI (trans-S-PDI), and N-PDI, show BN···π, C═S···π, and N···H interactions that survive over a longer range of longitudinal and transverse shifts.
View Article and Find Full Text PDFJ Fluoresc
July 2024
Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, 25240, Turkey.
Cellulose nanofiber (CNFs) obtained through TEMPO oxidation was structurally characterized using FT-IR (Fourier Transformed Infrared) and SEM (Scanning Electron Microscopy) spectroscopy. The molecular aggregation and spectroscopic properties of Rhodamine B (Rh-B) in CNFs suspension were investigated using molecular absorption and steady-state fluorescence spectroscopy techniques. The interaction between CNFs particles in the aqueous suspension and the cationic dye compound was examined in comparison to its behavior in deionized water.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
Electrochemical reduction of CO to value-added products provides a feasible pathway for mitigating net carbon emissions and storing renewable energy. However, the low dimerization efficiency of the absorbed CO intermediate (*CO) and the competitive hydrogen evolution reaction hinder the selective electroreduction of CO to ethane (CH) with a high energy density. Here, we designed hydrophobic iodide-derived copper electrodes (I-Cu/Nafion) for reducing CO to CH.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!