Recent research on functional analyses (FAs) has examined the extent to which problem behavior is maintained by single (isolated) or combined (synthesized) reinforcement contingencies. Outcomes of these analyses might differ depending on the sources of information that are used to inform contingencies included in test conditions. The purpose of the current study was to compare the outcomes of isolated FAs and synthesized contingency analyses (SCAs) with 3 participants. Conditions in both analyses were informed by interviews and both unstructured and structured observations. Problem behavior for all 3 participants was maintained by 1 or 2 isolated reinforcers. Results suggested false-positive SCA results for 2 participants. For 1 participant, a second isolated reinforcer was identified following the SCA, indicating the induction of a novel function. Implications for the use of isolated and synthesized consequences are discussed, as well as the predictive validity of the assessments that are used to inform them.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jaba.890DOI Listing

Publication Analysis

Top Keywords

isolated synthesized
8
functional analyses
8
problem behavior
8
analyses
5
isolated
5
comparison isolated
4
synthesized
4
synthesized contingencies
4
contingencies functional
4
analyses functional
4

Similar Publications

Phytometabolites, Pharmacological Effects, Ethnomedicinal Properties, and Bioeconomic Potential of Velvet Apple (Diospyros discolor Willd.): A Review.

Chem Biodivers

January 2025

Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.

View Article and Find Full Text PDF

Achieving sensors that can sensitively and selectively quantify levels of analytes in complex biofluids such as blood remains a significant challenge. To address this, we synthesized an array of isolated carbon nanochannels on a flat gold electrode that function as molecular sieves to prevent protein fouling and eliminate the need for antifouling layers. Utilizing a two-step pulsed technique, a reductive pulse expels negative interferences and fouling molecules followed by an oxidative pulse that oxidizes glucose at the bottom of the channel and on the gold surface.

View Article and Find Full Text PDF

Background: The study aimed to was to investigate the relationship between miR-2861, miR-5011-5p, and colorectal carcinogenesis.

Method: In the present study, it was isolated RNA from both the tumor and non-tumor tissue of a total of 80 CRC patients and after synthesizing the cDNA, it was performed qRT-PCR to determine the expression levels of miR‑2861 and miR‑5011-5p. In addition, it was predicted that dysregulated miRNAs targets, pathways and functional gene annotations that may be important in colorectal carcinogenesis using KEGG pathway and GO analysis.

View Article and Find Full Text PDF

In this study, we synthesized two nanocomposites, cross-linked PVA/HKUST and PVA/ZIF-67, by integrating metal-organic frameworks (MOFs) into electrospun polyvinyl alcohol (PVA). Several characterization techniques including FTIR, XRD, ICP, SEM, TGA, UV-Vis, zeta potential, and N adsorption-desorption were employed. The adsorption performance of the composites for cefixime (CFX) removal was assessed under varying conditions such as MOF content, contact time, pH, initial CFX concentration, and temperature.

View Article and Find Full Text PDF

Precious metal-based single-atom catalysts (PM-SACs) hosted in N-doped carbon supports have shown new opportunities to revolutionize cathodic oxygen reduction reaction (ORR). However, stabilizing the high density of PM-N sites remains a challenge, primarily due to the inherently high free energy of isolated metal atoms, predisposing them to facile atomic agglomeration. Herein, a molten salt-assisted synthesis strategy is proposed to prepare porous PM/N-C (PM = Ru, Pt, and Pd) electrocatalysts with densely accessible PM-N sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!