AI Article Synopsis

  • The study explores how natural language processing (NLP) can analyze unstructured text in electronic health records to predict functional outcomes following acute ischemic stroke.
  • It compares the effectiveness of NLP-driven predictions with conventional prognostic models using data from two hospital stroke registries.
  • Results indicate that incorporating unstructured clinical text significantly enhances predictive accuracy for patient outcomes, demonstrating that NLP offers a valuable tool for improving stroke prognostication.

Article Abstract

Background Conventional prognostic scores usually require predefined clinical variables to predict outcome. The advancement of natural language processing has made it feasible to derive meaning from unstructured data. We aimed to test whether using unstructured text in electronic health records can improve the prediction of functional outcome after acute ischemic stroke. Methods and Results Patients hospitalized for acute ischemic stroke were identified from 2 hospital stroke registries (3847 and 2668 patients, respectively). Prediction models developed using the first cohort were externally validated using the second cohort, and vice versa. Free text in the history of present illness and computed tomography reports was used to build machine learning models using natural language processing to predict poor functional outcome at 90 days poststroke. Four conventional prognostic models were used as baseline models. The area under the receiver operating characteristic curves of the model using history of present illness in the internal and external validation sets were 0.820 and 0.792, respectively, which were comparable to the National Institutes of Health Stroke Scale score (0.811 and 0.807). The model using computed tomography reports achieved area under the receiver operating characteristic curves of 0.758 and 0.658. Adding information from clinical text significantly improved the predictive performance of each baseline model in terms of area under the receiver operating characteristic curves, net reclassification improvement, and integrated discrimination improvement indices (all <0.001). Swapping the study cohorts led to similar results. Conclusions By using natural language processing, unstructured text in electronic health records can provide an alternative tool for stroke prognostication, and even enhance the performance of existing prognostic scores.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9075227PMC
http://dx.doi.org/10.1161/JAHA.121.023486DOI Listing

Publication Analysis

Top Keywords

natural language
12
language processing
12
functional outcome
12
acute ischemic
12
ischemic stroke
12
area receiver
12
receiver operating
12
operating characteristic
12
characteristic curves
12
prediction functional
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!