Boosting the replacement of traditional NH production (Haber-Bosch process) with photocatalytic technology is of great importance for energy and environment remediation. Herein, to develop a photocatalyst with efficient charge separation and abundant reactive sites for photocatalytic N fixation, a biomass-induced diphase-carbon doping strategy is proposed by adding lotus root starch which can be environmentally produced into the preparation of carbon nitride (CN). The adjustment to the CN framework by planar-fused carbon optimizes the band alignment of the catalyst, improving its response to sunlight. In particular, the in-plane-fused carbon in collaboration with the physically piled carbon initiates unique dual electron transfer pathways from different dimensions. The diphasic carbons can both function as qualified reactive sites according to the experimental explorations and further theoretical calculations, which effectively regulate the electron transfer and energy barrier associated with the N reduction on catalyst. The bio-carbon-doped catalyst exhibits drastically enhanced photocatalytic N fixation performance, and the NH yield on the optimized DC-CN0.1 reaches 167.35 µmol g h , which is fivefold of g-C N and stands far out from the single-phase doped systems. These explorations expand the metal-free skeleton engineering toolbox and provide new guidance for the solar energy utilizations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202105217 | DOI Listing |
Nat Commun
January 2025
Max Planck Institute of Colloids and Interfaces, Colloid Chemistry Department, Am Mühlenberg 1, 14476, Potsdam, Germany.
Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Nanoscale
January 2025
Advanced Materials Science Innovation Center, Longmen Laboratory, Luoyang 471003, China.
CO capture and separation from natural and fuel gas are important industrial issues that refer to the control of CO emissions and the purification of target gases. Here, a novel non-planar g-CN monolayer that could be synthesized the supramolecular self-assembly strategy was identified using DFT calculations. The cohesive energy, phonon spectrum, BOMD, and mechanical stability criteria confirm the stability of the g-CN monolayer.
View Article and Find Full Text PDFSmall
January 2025
School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China.
Multifunctional coatings have great application value in the protection of Marine equipment, ships and ship facilities, but they still suffer from the disadvantages of high preparation cost and complicated synthesis methods. Herein, employing a simple method to synthesize black carbon nitride (BCN), as the filler in polydimethylsiloxane (PDMS) to construct BCN/PDMS composite coating with a multifunctional anti-corrosion/antifouling coating capable of photothermal self-healing property. Experimental results exhibit that the BCN/PDMS coating can still possesses excellent corrosion resistance after 28 d of immersion in the simulated seawater, and the impedance modulus still manages to reach 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!