In recent years, sulfenate anions as key intermediates in enantioselective synthesis have attracted considerable attention. Typically, development of novel synthetic methods to generate sulfenate anions allows for the preparation of various enantiopure sulfoxides, which are prevalently used as auxiliaries, ligands, organocatalysts, and biologically active compounds. This review presents the in situ preparation methods and the recent applications of sulfenate anions in catalytic asymmetric synthesis of chiral sulfoxides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/tcr.202100242 | DOI Listing |
Arch Biochem Biophys
December 2024
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. Electronic address:
In this study, we investigated formation of the complex between glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and actin and the possibility of nitrosyl group transfer between GAPDH and actin. A complex of GAPDH with beta-actin was isolated from lysates of HEK293T cells using immunoprecipitation with antibodies against GAPDH or against beta-actin. The treatment of the cells with HO or NO donor did not affect the formation of the complex.
View Article and Find Full Text PDFMolecules
October 2024
Laboratoire Hétérochimie Fondamentale et Appliquée (UMR 5069), Université de Toulouse, CNRS, 118 Route de Narbonne, CEDEX 09, 31062 Toulouse, France.
Tetrahydro-4-thiopyran-4-one 1-oxide and sulfinyl-di--butylpropionate were reported as sources of bis-sulfenate anion and applied in a double pallado-catalyzed cross-coupling reaction for the synthesis of symmetrical biarylsulfoxides, tolerating a large array of electronic properties and bulkiness. The photophysical properties of a biarylsulfoxide have been explored, demonstrating an unreported TADF phenomenon on sulfoxide-containing scaffolds.
View Article and Find Full Text PDFOrg Lett
October 2024
Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China.
Cobalt-catalyzed enantioconvergent cross-coupling of C(sp)-H bonds with -generated sulfenate anions is achieved to access chiral sulfoxides, which are found in the structures of many biologically active agents. The more challenging aliphatic C-H bonds as well as sterically hindered substrates containing tertiary C-H bonds could also be tolerated well. Mechanistic studies indicate that the transformation could undergo a CoS(O)R-mediated single-electron transfer with -fluorocarboxamides, followed by a 1,5-hydrogen atom transfer and then a pivotal organocobalt(IV)-controlled enantioselective cross-coupling process.
View Article and Find Full Text PDFJ Org Chem
September 2024
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
A novel and highly efficient Pd-catalyzed arylation of sulfenate anions with aryl thianthrenium salts is demonstrated. This procedure provides a practical protocol to synthesize various diaryl and alkyl aryl sulfoxides in moderate-to-good yields. The new approach shows mild reaction conditions, broad substrate scope, and good functional group tolerance.
View Article and Find Full Text PDFRedox Biol
September 2024
Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China; Department of Human Anatomy and Histoembryology, Xinxiang Medical University, Xinxiang, China. Electronic address:
Cardiovascular disease (CVD) is one of the leading causes of mortality in humans, and oxidative stress plays a pivotal role in disease progression. This phenomenon typically arises from weakening of the cellular antioxidant system or excessive accumulation of peroxides. This review focuses on a specialized form of oxidative stress-disulfide stress-which is triggered by an imbalance in the glutaredoxin and thioredoxin antioxidant systems within the cell, leading to the accumulation of disulfide bonds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!