Effect on health from consumption of meat and meat products.

J Anim Sci Technol

Department of Animal Science and Technology, Chung-Ang University, Anseong 17546, Korea.

Published: September 2021

The aim of this study was to investigate the effects of dietary sodium nitrite and meat on human health. Sodium nitrite in processed meat is known to be one of the main precursors of carcinogens, such as N-nitroso compounds. However, we previously found that processed meat is not the primary source of sodium nitrite; nitrate or the conversion of nitrate in vegetables are contribute to generate more than 70% Sodium nitrite or nitrate containing compounds in body. Although the heavy consumption of meat is likely to cause various diseases, meat intake is not the only cause of colorectal cancer. Our review indicates that sodium nitrite derived from foods and endogenous nitric oxide may exhibit positive effects on human health, such as preventing cardiovascular disease or improving reproductive function. Therefore, further epidemiological studies considering various factors, such as cigarette consumption, alcohol consumption, stress index, salt intake, and genetic factors, are required to reliably elucidate the effects of dietary sodium nitrite and meat on the incidence of diseases, such as colorectal cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8564306PMC
http://dx.doi.org/10.5187/jast.2021.e101DOI Listing

Publication Analysis

Top Keywords

sodium nitrite
24
meat
8
consumption meat
8
effects dietary
8
dietary sodium
8
nitrite meat
8
human health
8
processed meat
8
nitrite nitrate
8
colorectal cancer
8

Similar Publications

Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest.

View Article and Find Full Text PDF

Current study evaluates the beneficial role of bio-functionalized zinc ferrite nanoparticles fabricated from an aqueous extract of Decalepis hamiltonii leaves (DHLE.ZnFeO NPs) on sodium nitrite (NaNO) and Diclofenac (DFC) induced oxidative stress in RBCs and Sprague Dawley male rat models. DHLE.

View Article and Find Full Text PDF

Introduction: Sodium nitrite is a potent oxidizer, which may precipitate rapidly lethal methemoglobinemia. Prompt diagnosis and treatment may salvage otherwise fatal cases. It is unclear if emergency departments are prepared for increasing cases.

View Article and Find Full Text PDF

Enrichment of a heterotrophic nitrifying and aerobic denitrifying bacterial consortium: Microbial community succession and nitrogen removal characteristics and mechanisms.

Bioresour Technol

December 2024

Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China. Electronic address:

This study cultivated a bacterial consortium (S60) from landfill leachate that exhibited effective heterotrophic nitrification and aerobic denitrification (HN-AD) properties. Under aerobic conditions, the removal of NH-N reached 100 % when the S60 consortium utilised NH-N either as the sole nitrogen source or in combination with NO-N and NO-N. Optimal HN-AD performance was achieved with sodium acetate as a carbon source and a pH of 7.

View Article and Find Full Text PDF

Background: Diabetes mellitus (DM) is one of the most common metabolic diseases in the world. Studies have shown that nitric oxide (NO) promotes re-epithelialization and stimulates angiogenesis and neovascularization. This study aimed to investigate the effect of exogenous NO on diabetic wound healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!