We examine five quantitative models of the cell-cycle and cell-size control in and that have been proposed over the last decade to explain single-cell experimental data generated with high-throughput methods. After presenting the statistical properties of these models, we test their predictions against experimental data. Based on simple calculations of the defining correlations in each model, we first dismiss the stochastic Helmstetter-Cooper model and the Initiation Adder model, and show that both the Replication Double Adder (RDA) and the Independent Double Adder (IDA) model are more consistent with the data than the other models. We then apply a recently proposed statistical analysis method and obtain that the IDA model is the most likely model of the cell cycle. By showing that the RDA model is fundamentally inconsistent with size convergence by the adder principle, we conclude that the IDA model is most consistent with the data and the biology of bacterial cell-cycle and cell-size control. Mechanistically, the Independent Adder Model is equivalent to two biological principles: (i) balanced biosynthesis of the cell-cycle proteins, and (ii) their accumulation to a respective threshold number to trigger initiation and division.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594374 | PMC |
http://dx.doi.org/10.3389/fmicb.2021.721899 | DOI Listing |
Mol Biol Rep
January 2025
Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
Background: Litter size in mice is an important fitness and economic feature that is controlled by several genes and influenced by non-genetic factors too. High positive selection pressure in each generation for Litter size at birth (LSB), resulted in the development of high and low prolific lines of inbred Swiss albino mice (SAM). Despite uniform management conditions, these lines showed variability in LSB across the generation.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Physics, Kharazmi University, Tehran, Iran; Endocrinology and Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran. Electronic address:
Colorectal cancer (CRC) remains a significant public health concern, emphasizing the need for innovative therapeutic strategies to improve patient outcomes. This study aimed to develop a highly efficient nanocarrier for targeted drug delivery, enhancing drug efficacy while minimizing concentrations and limiting adverse effects. We synthesized protein-based β-lactoglobulin (βlg) nanoparticles (NPs), loaded with 5-fluorouracil (5-FU) and sodium butyrate (NaB), and further functionalized with folic acid (FA) for specific targeting of folate receptor-positive CRC cells.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
Microplastics (MPs) and perfluorobutanoic acid (PFBA), emerging contaminants, are ubiquitous in the environment and toxic to organisms. The interaction of MPs with other contaminants can affect their toxicity. However, the impact of MPs on PFBA toxicity remains unknown.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
January 2025
Department of Microorganisms, Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.
An obligately anaerobic, spore-forming sulphate-reducing bacterium, strain SB140, was isolated from a long-term continuous enrichment culture that was inoculated with peat soil from an acidic fen. Cells were immotile, slightly curved rods that stained Gram-negative. The optimum temperature for growth was 28 °C.
View Article and Find Full Text PDFNPJ Breast Cancer
January 2025
Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Endocrine therapy with CDK4/6 inhibitors is standard for estrogen receptor-positive, HER2-negative metastatic breast cancer (ER+/HER2- MBC), yet clinical resistance develops. Previously, we demonstrated that low doses of palbociclib activate autophagy, reversing initial G1 cell cycle arrest, while high concentrations induce off-target senescence. The autophagy inhibitor hydroxychloroquine (HCQ) induced on-target senescence at lower palbociclib doses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!