Asymmetric radical carboesterification of dienes.

Nat Commun

State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. of China.

Published: November 2021

The straightforward strategy of building a chiral C-O bond directly on a general carbon radical center is challenging and stereocontrol of the reactions of open-chain hydrocarbon radicals remains a largely unsolved problem. Advance in this elementary step will spur the development of asymmetric radical C-O bond construction. Herein, we report a copper-catalyzed regioselective and enantioselective carboesterification of substituted dienes using alkyl diacyl peroxides as the source of both the carbon and oxygen substituents. The participation of external acids in this reaction substantially extends its applicability and leads to structurally diverse allylic ester products. This work represents the advance in the key elementary reaction of intermolecular enantioselective construction of C-O bond on open-chain hydrocarbon radicals and may lead to the discovery of other asymmetric radical reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602303PMC
http://dx.doi.org/10.1038/s41467-021-26843-2DOI Listing

Publication Analysis

Top Keywords

asymmetric radical
12
c-o bond
12
open-chain hydrocarbon
8
hydrocarbon radicals
8
radical carboesterification
4
carboesterification dienes
4
dienes straightforward
4
straightforward strategy
4
strategy building
4
building chiral
4

Similar Publications

Catalytic Enantioselective Nucleophilic Amination of α-Halo Carbonyl Compounds with Free Amines.

J Am Chem Soc

December 2024

Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China.

Catalytic enantioselective substitution of the readily available racemic α-halo carbonyl compounds by nitrogen nucleophiles represents one of the most convenient and direct approaches to access enantioenriched α-amino carbonyl compounds. Distinct from the two available strategies involving radicals and enolate ions, herein we have developed a new protocol featuring an electronically opposite way to weaken/cleave the carbon-halogen bond. A suitable chiral anion-based catalyst enables effective asymmetric control over the key positively charged intermediates.

View Article and Find Full Text PDF

Highly functionalized xanthenes possess an impressive range of bioactivities and daunting synthetic challenge due to their unique ring systems and stereocenters. Here, we report an unprecedented ketyl radicals-induced skeletal rearrangement reaction of spirodihydrobenzofurans, enabled by zero-valent iron as reducing agents via photoredox catalysis, facilitating the facile preparation of various highly functionalized xanthenes. The features of this protocol include high chemo- and regioselectivity, exceptionally mild conditions, a broad substrate scope, scalability to gram-scale quantities, and consistent delivery of good to excellent yields.

View Article and Find Full Text PDF

The functional significance of brain asymmetry is still largely unknown. Studying the level of correlation of neuropeptide-degrading activities between subcellular fractions such as synaptosomal, of the left and right hemispheres of male rats during development and aging could provide relevant data on their functional role during these periods. The present study analyzes the level of correlation of a enkephalin- or angiotensin III-degrading activity, such as membrane-bound arginyl-aminopeptidase activity (M-B ArgAP) between the left versus right homogenate and/or synaptosomal subcellular fractions obtained and processed independently from both brain hemispheres during development and aging.

View Article and Find Full Text PDF

Developing asymmetric transformations using electroredox and N-heterocyclic carbene (NHC)-catalyzed radical pathways is still desirable and challenging. Herein, we report an iodide-promoted β-carbon activation (LUMO-lowering process) of enals via electroredox carbene catalysis coupled with a hydrogen evolution reaction (HER). This strategy offers an environmentally friendly and sustainable route for rapidly assembling synthetically useful chiral naphthopyran-3-one in good to excellent yield and enantioselectivity using traceless electrons as inexpensive and greener oxidants.

View Article and Find Full Text PDF

Photoredox Radical Truce-Smiles Rearrangement of Sulfinyl Acrylamides with Bromodifluoroacetamides.

Org Lett

December 2024

Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China.

We herein report a photochemical Truce-Smiles rearrangement reaction of -sulfinyl acrylamides with bromodifluoroacetamides resulting in the synthesis of a series of aryl difluoroglutaramides in moderate to good yields. The asymmetric synthesis using chiral sulfinamides produced quaternary carboncentered glutaramide products with a modest enantioselectivity. This protocol effectively complements previous Truce-Smiles rearrangement methods involving -sulfonyl acrylamides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!