The orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment. Analysis of the magnetic torque reveals the presence of the contribution from the orbital Hall effect in the heavy metal, which competes with the contribution from the spin Hall effect. In particular, we find that the net torque in Ni/Ta bilayers is opposite in sign to the spin Hall theory prediction but instead consistent with the orbital Hall theory, which unambiguously confirms the orbital torque generated by the orbital Hall effect. Our finding opens a possibility of utilizing the orbital current for spintronic device applications, and it will invigorate researches on spin-orbit-coupled phenomena based on orbital engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602295PMC
http://dx.doi.org/10.1038/s41467-021-26650-9DOI Listing

Publication Analysis

Top Keywords

orbital hall
20
orbital current
16
orbital
12
spin hall
12
orbital torque
8
hall
8
hall theory
8
current
5
torque magnetic
4
magnetic bilayers
4

Similar Publications

Spin-Orbit Torque (SOT) Magnetic Random-Access Memory (MRAM) devices offer improved power efficiency, nonvolatility, and performance compared to static RAM, making them ideal, for instance, for cache memory applications. Efficient magnetization switching, long data retention, and high-density integration in SOT MRAM require ferromagnets (FM) with perpendicular magnetic anisotropy (PMA) combined with large torques enhanced by Orbital Hall Effect (OHE). We have engineered a PMA [Co/Ni] FM on selected OHE layers (Ru, Nb, Cr) and investigated the potential of theoretically predicted larger orbital Hall conductivity (OHC) to quantify the torque and switching current in OHE/[Co/Ni] stacks.

View Article and Find Full Text PDF

Concurrent Pressure-Induced Superconductivity and Photoconductivity Transitions in PbSeTe.

Adv Mater

December 2024

Academy for Advanced Interdisciplinary Studies and Department of Physics, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, P. R. China.

Concurrent superconductivity and negative photoconductivity (NPC) are rarely observed. Here, the discovery in PbSeTe of superconductivity and photoconductivity transitions between positive photoconductivity (PPC) and NPC during compression is reported to ≈40 GPa and subsequent decompression, which are also accompanied by reversible structure transitions (3D Fm m ⇌ 2D Pnma ⇌ 3D Pm m). Superconductivity with a maximum T of ≈6.

View Article and Find Full Text PDF

Chiral effects at the metal center in Fe(III) spin crossover coordination salts.

J Phys Condens Matter

December 2024

Department of Physics and Astronomy, University of Nebraska-Lincoln, Jorgenesen Hall, 855 North 16th Street, Lincoln, Nebraska, 68588-0299, UNITED STATES.

Evidence of chirality was observed at the Fe metal center in Fe(III) spin crossover coordination salts [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] from X-ray absorption spectroscopy at the Fe 2pcore threshold. Based on the circularly polarized X-ray absorption data, the X-ray natural circular dichroism seen [Fe(qsal)Ni(dmit)] and [Fe(qsal)(TCNQ)] is far stronger than seen for [Fe(qsal)Cl] suggesting this natural circular dichroism signature is a ligand effect rather than a result of just a loss of octahedral symmetry on the Fe core. The larger the chiral effects in the Fe 2p core to bound X-ray absorption, the greater the perturbation of the Fe 2pto 2pspin-orbit splitting seen in the X-ray absorption spectra.

View Article and Find Full Text PDF

Using a full-wave theory to analyze the light beam scattering at sharp interfaces, we reexamine the anomalous spin-orbit interaction (SOI) around the Fresnel coefficient (FC) singularities. We evaluate the spin-dependent beam shifts near the singularity for three typical optical interfaces, comparing our results with existing ones. Existing theories neglect the contribution of the wave vector component near the FC singularities, potentially leading to erroneous results.

View Article and Find Full Text PDF

This article discusses a finite-source stock-dependent stochastic inventory system with multiple servers and a retrial facility. The system can store a maximum of S items, and the lifetime of each item is exponentially distributed. The primary customer arrives at the waiting hall from the finite source and receives service from multi-servers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!