The fluorescent biosensor for detecting N methyladenine FzD5 mRNA and MazF activity.

Anal Chim Acta

Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China; National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, PR China. Electronic address:

Published: December 2021

N methyladenine (mA) modification of the FzD5 mRNA, an important post-transcriptional regulation in eukaryotes, is closely related to the occurrence and development of breast cancer. Here, we developed an ultra-sensitive biosensor based on MazF combining with cascaded strand displacement amplification (C-SDA) and CRISPR/Cas12a to detect mA FzD5 mRNA. MazF toxin protein is a vital component of the bacterial mazEF toxin-antitoxin system that is sensitive to mA RNA. Take advantage of it, the biosensor achieved antibody-independent and gene-specific detection for mA RNA. Moreover, compared with traditional amplification methods, the more efficient C-SDA and the CRISPR/Cas12a system with trans-cleavage activity gave the fluorescent biosensor an excellent sensitivity with the detection limit of 0.64 fM. In addition, MazF, as a new antibacterial target, was detected by the biosensor based on C-SDA and CRISPR/Cas12a with the detection limit of 1.127 × 10 U mL. More importantly, the biosensor has good performance in complex samples. Therefore, the biosensor is a potential tool in detecting mA FzD5 mRNA and MazF activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.339185DOI Listing

Publication Analysis

Top Keywords

fzd5 mrna
16
mrna mazf
12
c-sda crispr/cas12a
12
fluorescent biosensor
8
mazf activity
8
biosensor based
8
detection limit
8
biosensor
6
mazf
5
biosensor detecting
4

Similar Publications

Ocular coloboma (OC) is a congenital disorder caused by the incomplete closure of the embryonic ocular fissure. OC can present as a simple anomaly or, in more complex forms, be associated with additional ocular abnormalities. It can occur in isolation or as part of a broader syndrome, exhibiting considerable genetic heterogeneity.

View Article and Find Full Text PDF

Teriparatide (PTH (1-34)), PTHrP (1-36), and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy long term is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize they may also differentially modulate the osteoblast transcriptome. Treatment of mouse calvarial osteoblasts with 1 nM of the peptides for 4 hours results in RNA sequencing data with PTH (1-34) regulating 367 genes, including 194 unique genes; PTHrP (1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes.

View Article and Find Full Text PDF

Teriparatide (PTH(1-34)) and its analogs, PTHrP(1-36) and abaloparatide (ABL) have been used for the treatment of osteoporosis, but their efficacy over long-term use is significantly limited. The 3 peptides exert time- and dose-dependent differential responses in osteoblasts, leading us to hypothesize that they may also differentially modulate the osteoblast transcriptome. We show that treatment of mouse calvarial osteoblasts with 1 nM of the 3 peptides for 4 h results in RNA-Seq data with PTH(1-34) regulating 367 genes, including 194 unique genes; PTHrP(1-36) regulating 117 genes, including 15 unique genes; and ABL regulating 179 genes, including 20 unique genes.

View Article and Find Full Text PDF

A desert lncRNA HIDEN regulates human endoderm differentiation via interacting with IMP1 and stabilizing FZD5 mRNA.

Genome Biol

April 2023

Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.

Background: Extensive studies have revealed the function and mechanism of lncRNAs in development and differentiation, but the majority have focused on those lncRNAs adjacent to protein-coding genes. In contrast, lncRNAs located in gene deserts are rarely explored. Here, we utilize multiple differentiation systems to dissect the role of a desert lncRNA, HIDEN (human IMP1-associated "desert" definitive endoderm lncRNA), in definitive endoderm differentiation from human pluripotent stem cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!