As a crucial biothiol, glutathione (GSH) plays a key role in the organisms. Monitoring GSH level is of great significance for disease diagnosis and biomedical research. In this work, polydopamine (PDA) nanoparticles-red fluorescent carbonized polymer dots (r-CPDs) based ratiometric fluorescence sensing platform was constructed and employed for GSH assay. Dopamine (DA) could be oxidized by cobalt oxyhydroxide (CoOOH) nanosheets and further polymerized into PDA nanoparticles with green fluorescence. However, in the presence of GSH, CoOOH nanosheets were reduced and decomposed, which prevented the production of PDA nanoparticles. In the sensing system, green-emitting PDA nanoparticles were employed as a response unit and r-CPDs were used as an internal reference unit. With the addition of GSH, the green fluorescence of PDA nanoparticles decreased as well as the red fluorescence of system remained relatively stable. Importantly, a distinct fluorescence color evolution from green to red was presented with a serious of GSH concentrations. Based on this, a portable smartphone-assisted ratiometric chromaticity analytical method was developed to achieve the on-site visual detection of GSH. Both the established ratiometric fluorescence and ratiometric chromaticity sensing methods for GSH assay have the merits of wide linear range, high sensitivity and excellent accuracy, which are suitable for the determination of GSH in human serum and exhibit great application potential in rapid and accurate monitoring of the GSH levels in clinical. Moreover, an ingenious logical device reflecting GSH levels was designed based on the two different fluorescence signals, which provided a new strategy for the intelligent online detection of GSH in complex biological matrices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.339165DOI Listing

Publication Analysis

Top Keywords

pda nanoparticles
16
ratiometric fluorescence
12
gsh
12
smartphone-assisted ratiometric
8
fluorescence
8
fluorescence sensing
8
sensing platform
8
logical device
8
carbonized polymer
8
polymer dots
8

Similar Publications

Sepsis is a serious and life-threatening condition, which can lead to organ failure and death clinically. Abnormally increased cell-free DNA (cfDNA) and inflammatory cytokines are involved in the development and progression of sepsis. Thus, cfDNA clearance and down-regulation of inflammatory factors are essential for the effective treatment of sepsis.

View Article and Find Full Text PDF

Polydopamine-Mediated, Centrifugal Force-Driven Gold Nanoparticle-Deposited Microneedle SERS Sensors for Food Safety Monitoring Theoretical Study of the SERS Substrate Fabrication.

ACS Sens

January 2025

The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai 200234, P. R. China.

Microneedle (MN) sensors have great promise for food safety detection, but the rapid preparation of MNs for surface-enhanced Raman scattering (SERS) sensors with tunable and homogeneous nanoparticles remains a great challenge. To address this, a SERS sensor of gold nanoparticles@polydopamine@poly(methyl methacrylate) MN (AuNPs@PDA@PMMA-MN) was developed. The extended-Derjaguin-Landau-Verwey-Overbeek theory was applied to calculate the interaction energy between AuNPs and PDA.

View Article and Find Full Text PDF

Portal vein tumor thrombus (PVTT) is a poor prognostic factor for hepatocellular carcinoma (HCC) patients, highlighting the need for an oral drug delivery system that combines convenience, simplicity, biosafety, and improved patient compliance. Leveraging the unique anatomy of the portal vein and insights from single-cell RNA sequencing of the PVTT tumor microenvironment, we developed oral pellets using CaCO@PDA nanoparticles (NPs) encapsulating both doxorubicin hydrochloride and low molecular weight heparin. These NPs target the tumor thrombus microenvironment, aiming to break down the thrombus barrier and turn the challenge of portal vein blockage into an advantage by enhancing drug delivery efficiency through oral administration.

View Article and Find Full Text PDF

Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar-Thermal Energy Management.

Molecules

January 2025

Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Yunnan International Joint Laboratory of Sustainable Polymers, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China.

The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry.

View Article and Find Full Text PDF

Recombinant collagen microneedles for transdermal delivery of antibacterial copper-DNA nanoparticles to treat skin and soft tissue infections.

J Control Release

January 2025

School of Pharmacy, Changzhou University, Changzhou 213164, China; School of Medical and Health Engineering, Changzhou University, Changzhou 213164, PR China. Electronic address:

Skin and soft tissue infections (SSTI) include bacterial infections of the skin, muscles, and connective tissue such as ligaments and tendons. SSTI in patients with immunocompromising diseases may lead to chronic, hard-to-heal infected wounds, resulting in disability, amputation, or even death. To treat SSTI and rebuild the defensive barrier of the skin, here we utilize recombinant type XVII collagen protein (rCol XVII) to construct biodegradable, regenerative collagen microneedles (rCol-MNs) for transdermal delivery of antibacterial agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!