Background: Window-of-opportunity trials, evaluating the engagement of drugs with their biological target in the time period between diagnosis and standard-of-care treatment, can help prioritise promising new systemic treatments for later-phase clinical trials. Renal cell carcinoma (RCC), the 7 commonest solid cancer in the UK, exhibits targets for multiple new systemic anti-cancer agents including DNA damage response inhibitors, agents targeting vascular pathways and immune checkpoint inhibitors. Here we present the trial protocol for the WIndow-of-opportunity clinical trial platform for evaluation of novel treatment strategies in REnal cell cancer (WIRE).
Methods: WIRE is a Phase II, multi-arm, multi-centre, non-randomised, proof-of-mechanism (single and combination investigational medicinal product [IMP]), platform trial using a Bayesian adaptive design. The Bayesian adaptive design leverages outcome information from initial participants during pre-specified interim analyses to determine and minimise the number of participants required to demonstrate efficacy or futility. Patients with biopsy-proven, surgically resectable, cT1b+, cN0-1, cM0-1 clear cell RCC and no contraindications to the IMPs are eligible to participate. Participants undergo diagnostic staging CT and renal mass biopsy followed by treatment in one of the treatment arms for at least 14 days. Initially, the trial includes five treatment arms with cediranib, cediranib + olaparib, olaparib, durvalumab and durvalumab + olaparib. Participants undergo a multiparametric MRI before and after treatment. Vascularised and de-vascularised tissue is collected at surgery. A ≥ 30% increase in CD8+ T-cells on immunohistochemistry between the screening and nephrectomy is the primary endpoint for durvalumab-containing arms. Meanwhile, a reduction in tumour vascular permeability measured by K on dynamic contrast-enhanced MRI by ≥30% is the primary endpoint for other arms. Secondary outcomes include adverse events and tumour size change. Exploratory outcomes include biomarkers of drug mechanism and treatment effects in blood, urine, tissue and imaging.
Discussion: WIRE is the first trial using a window-of-opportunity design to demonstrate pharmacological activity of novel single and combination treatments in RCC in the pre-surgical space. It will provide rationale for prioritising promising treatments for later phase trials and support the development of new biomarkers of treatment effect with its extensive translational agenda.
Trial Registration: ClinicalTrials.gov: NCT03741426 / EudraCT: 2018-003056-21 .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8600815 | PMC |
http://dx.doi.org/10.1186/s12885-021-08965-4 | DOI Listing |
Sci Rep
January 2025
Departemant of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.
View Article and Find Full Text PDFNat Commun
January 2025
Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
Large-scale combination drug screens are generally considered intractable due to the immense number of possible combinations. Existing approaches use ad hoc fixed experimental designs then train machine learning models to impute unobserved combinations. Here we propose BATCHIE, an orthogonal approach that conducts experiments dynamically in batches.
View Article and Find Full Text PDFPLoS One
January 2025
South African DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Stellenbosch, South Africa.
Background: Monitoring trends in multiple infections with SARS-CoV-2, following several pandemic waves, provides insight into the biological characteristics of new variants, but also necessitates methods to understand the risk of multiple reinfections.
Objectives: We generalised a catalytic model designed to detect increases in the risk of SARS-CoV-2 reinfection, to assess the population-level risk of multiple reinfections.
Methods: The catalytic model assumes the risk of reinfection is proportional to observed infections and uses a Bayesian approach to fit model parameters to the number of nth infections among individuals that occur at least 90 days after a previous infection.
Biometrics
October 2024
Department of Statistics, North Carolina State University, Raleigh, NC 27695, United States.
Accurate delineation of functional brain regions adjacent to tumors is imperative for planning neurosurgery that preserves critical functions. Functional magnetic resonance imaging (fMRI) plays an increasingly pivotal role in presurgical counseling and planning. In the analysis of presurgical fMRI data, the impact of false negatives on patients surpasses that of false positives because failure to identify functional regions and unintentionally resecting critical tissues can result in severe harm to patients.
View Article and Find Full Text PDFConscious Cogn
December 2024
Department of Business and Marketing, Faculty of Commerce, Kyushu Sangyo University, 3-1 Matsukadai 2-Chome, Higashi-ku, Fukuoka 813-8503, Japan. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!