The phenomenon of non-random occurrence of synonymous nucleotide triplets (codons) in the coding sequences of genes is the codon usage bias (CUB). In this study, we used bioinformatic tool kit to analyze the compositional pattern and CUB of mitogenes namely COI, COII and COIII across different orders of reptiles. Estimation of overall base composition in the protein-coding sequences of COI, COII and COIII genes of the reptilian orders revealed an uneven usage of nucleotides. The overall count of A nucleotide was found to be the highest while the overall count of G nucleotide was the least. The CO genes across the three reptilian orders were prominently AT biased. Comparison of the GC proportion at each codon position displayed that GC1 percentage ranked the highest in all the three CO genes of the reptilian orders. SCUO values indicated weaker CUB, while considerable variation of SCUO values existed in the three CO genes across the studied reptiles. Relative synonymous codon usage (RSCU) values indicated that mostly the A ending codons were preferred. Based on the parameters namely neutrality plot, mutational responsive index and translational selection, we could conclude that natural selection was the major evolutionary force in COI, COII and COIII genes in the studied reptilian orders. However, correspondence analysis, parity plot and correlation studies indicated the existence of mutation pressure as well on the CO genes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mito.2021.11.004 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!