Surface-Modified and Unmodified Calcite: Effects of Water and Saturated Aqueous Octanoic Acid Droplets on Stability and Saturated Fatty Acid Layer Organization.

Langmuir

School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden.

Published: December 2021

A profound understanding of the properties of unmodified and saturated fatty acid-modified calcite surfaces is essential for elucidating their resistance and stability in the presence of water droplets. Additional insights can be obtained by also studying the effects of carboxylic acid-saturated aqueous solutions. We elucidate surface wettability, structure, and nanomechanical properties beneath and at the edge of a deposited droplet after its evaporation. When calcite was coated by a highly packed monolayer of stearic acid, a hydrophilic region was found at the three-phase contact line. In atomic force microscopy mapping, this region is characterized by low adhesion and a topographical hillock. The surface that previously was covered by the droplet demonstrated a patchy structure of about 6 nm height, implying stearic acid reorganization into a patchy bilayer-like structure. Our data suggest that during droplet reverse dispensing and droplet evaporation, pinning of the three-phase contact line leads to the transport of dissolved fatty carboxylic acid and possibly calcium bicarbonate Ca(HCO) molecules to the contact line boundary. Compared to the surface of intrinsically hydrophobic materials, such as polystyrene, the changes in contact angle and base diameter during droplet evaporation on stearic acid-modified calcite are strikingly different. This difference is due to stearic acid reorganization on the surface and transport to the water-air interface of the droplet. An effect of the evaporating droplet is also observed on unmodified calcite due to dissolution and recrystallization of the calcite surface in the presence of water. In the case where a water droplet saturated with octanoic acid is used instead of water, the stearic acid-coated calcite remains considerably more stable. Our findings are discussed in terms of the coffee-ring effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8656169PMC
http://dx.doi.org/10.1021/acs.langmuir.1c02387DOI Listing

Publication Analysis

Top Keywords

droplet evaporation
12
stearic acid
12
unmodified calcite
8
octanoic acid
8
saturated fatty
8
acid-modified calcite
8
presence water
8
droplet
8
three-phase contact
8
acid reorganization
8

Similar Publications

Effect of Photolithographic Biomimetic Surface Microstructure on Wettability and Droplet Evaporation Process.

Biomimetics (Basel)

November 2024

Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, UK.

In nature, engineering technology and daily life, wetting phenomena are widespread and have essential roles and significance. Bionics is becoming increasingly important nowadays and exploring the mechanism that influences biomimetic surface microstructure on droplet wetting process and heat and mass transfer characteristics is becoming more meaningful. In this paper, based on photolithography technology, SU-8 photoresist was used as raw material to prepare biomimetic surfaces with microstructures in various arrangements.

View Article and Find Full Text PDF

Plasmonic nanoparticles are widely recognized as photothermal conversion agents, i.e., nanotransducers or nanoheaters.

View Article and Find Full Text PDF

Hydrogel-Assisted Robust Supraparticles Evolved from Droplet Evaporation.

ACS Nano

December 2024

Dalian Key Laboratory of Intelligent Chemistry, School of Chemistry, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.

Supraparticles, formed through the self-assembly of nanoparticles, are promising contenders in catalysis, sensing, and drug delivery due to their exceptional specific surface area and porosity. However, their mechanical resilience, especially in dimensions spanning micrometers and beyond, is challenged by the inherently weak interactions among their constituent building blocks, significantly constraining their broad applicability. Here, we have exploited a robust supraparticle fabrication strategy by integrating hydrogel components into the assembly system and evaporating on the superamphiphobic surface.

View Article and Find Full Text PDF

Effect of Mixed Surfactant on Evaporation Driven Salt Crystallization Morphology in Sessile Droplets.

Langmuir

December 2024

School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Extensive studies have been conducted to manipulate the morphology of sodium chloride salt crystals to tailor their physical and chemical properties. Among the myriad factors considered, the effects of the substrate and additives have profound impacts on the types of salt depositions. Surface charge effects and various ionic surfactants influence ion movement, resulting in diverse crystal morphologies.

View Article and Find Full Text PDF
Article Synopsis
  • The report highlights the efficiency of SbSe nanorods (NRs) in converting light to heat for solar thermal applications, achieving around 57.8% efficiency with specific lasers and heating hybrid membranes to ≈59°C in just 15 minutes.* -
  • Despite their advantages, SbSe NRs have a limited evaporation rate due to hydrophobicity, which restricts water movement to the heated areas, leading to less effective solar evaporation.* -
  • A new macro-channel imprinting technique improves water transport in these hybrid membranes, boosting evaporation efficiency to ≈148% under strong lighting and achieving effective heavy metal removal from water, meeting WHO standards for safe drinking water.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!