Construction of chromosomes 3D models based on single cell Hi-C data constitute an important challenge. We present a reconstruction approach, DPDchrom, that incorporates basic knowledge whether the reconstructed conformation should be coil-like or globular and spring relaxation at contact sites. In contrast to previously published protocols, DPDchrom can naturally form globular conformation due to the presence of explicit solvent. Benchmarking of this and several other methods on artificial polymer models reveals similar reconstruction accuracy at high contact density and DPDchrom advantage at low contact density. To compare 3D structures insensitively to spatial orientation and scale, we propose the Modified Jaccard Index. We analyzed two sources of the contact dropout: contact radius change and random contact sampling. We found that the reconstruction accuracy exponentially depends on the number of contacts per genomic bin allowing to estimate the reconstruction accuracy in advance. We applied DPDchrom to model chromosome configurations based on single-cell Hi-C data of mouse oocytes and found that these configurations differ significantly from a random one, that is consistent with other studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601426PMC
http://dx.doi.org/10.1371/journal.pcbi.1009546DOI Listing

Publication Analysis

Top Keywords

hi-c data
12
reconstruction accuracy
12
single cell
8
cell hi-c
8
contact density
8
contact
6
perspectives reconstruction
4
reconstruction chromatin
4
chromatin conformation
4
conformation single
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!