Rhodopsin (RHO) is a light-sensitive pigment in the retina and the main prototypical protein of the G-protein-coupled receptor (GCPR) family. After receiving a light stimulus, RHO and its cofactor retinylidene undergo a series of structural changes that initiate an intricate transduction mechanism. Along with RHO, other partner proteins play key roles in the signaling pathway. These include transducin, a GTPase, kinases that phosphorylate RHO, and arrestin (Arr), which ultimately stops the signaling process and promotes RHO regeneration. A large number of RHO genetic mutations may lead to very severe retinal dysfunction and eventually to impaired dark adaptation disease called autosomal dominant retinitis pigmentosa (adRP). In this study, we used molecular dynamics (MD) simulations to evaluate the different behaviors of the dimeric form of wild-type RHO (WT dRHO) and its mutant at position 135 of arginine to leucine (dR135L), both in the free (noncomplexed) and in complex with the transducin-like protein (Gtl). Gtl is a heterotrimeric model composed of a mixture of human and bovine G proteins. Our calculations allow us to explain how the mutation causes structural changes in the RHO dimer and how this can affect the signal that transducin generates when it is bound to RHO. Moreover, the structural modifications induced by the R135L mutation can also account for other misfunctions observed in the up- and downstream signaling pathways. The mechanism of these dysfunctions, together with the transducin activity reduction, provides structure-based explanations of the impairment of some key processes that lead to adRP.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.1c06348DOI Listing

Publication Analysis

Top Keywords

rho
9
retinitis pigmentosa
8
structural changes
8
dimeric rhodopsin
4
rhodopsin r135l
4
r135l mutant-transducin-like
4
mutant-transducin-like complex
4
complex sheds
4
sheds light
4
light retinitis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!