Induction of estrogen receptor β-mediated autophagy sensitizes breast cancer cells to TAD1822-7, a novel biphenyl urea taspine derivative.

Mol Biol Rep

School of Pharmacy, Health Science Center, Shaanxi Province, Xi'an Jiaotong University, No. 76, Yanta West Street, #54, Xi'an, 710061, People's Republic of China.

Published: February 2022

Background: Female breast cancer has become the most commonly diagnosed cancer worldwide. As a tumor suppressor, estrogen receptor β (ERβ) can be potentially targeted for breast cancer therapy.

Methods And Results: TAD1822-7 was evaluated for ERβ-mediated autophagy and cell death using cell proliferation assay, Annexin V/PI staining, immunofluorescence, western blotting, ERβ siRNA, ERβ plasmid transfection and hypoxia cell models. TAD1822-7 upregulated ERβ causing cell death and induced mitochondrial dysfunction and autophagy companied with mitochondrial located ERβ. Enhanced levels of microtubule associated protein1 light chain 3 (LC3)-II and p62/SQSTM1 (p62) indicated that TAD1822-7 blocked the late-stage autolysosome formation, leading to cell death. Mechanistically, TAD1822-7-induced cell death was mediated by phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathways. Moreover, TAD1822-7 modulated hypoxia inducible factor (HIF) functions and autophagy via the inhibition of HIF-1β in the context of hypoxia-induced autophagy. ERβ overexpression and ERβ agonist showed similar effects, whereas ERβ siRNA abrogated TAD1822-7-induced cell death, the inhibition of PI3K/AKT pathway and autophagy. The involvement of PI3K/AKT pathway and autophagy was also demonstrated in TAD1822-7-treated hypoxic breast cancer cells.

Conclusions: These findings provide new insight into the mechanism underlying the inhibitory effects of TAD1822-7 via ERβ-mediated pathways in breast cancer cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-021-06950-5DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
cell death
20
estrogen receptor
8
cancer cells
8
erβ
8
erβ sirna
8
tad1822-7-induced cell
8
pi3k/akt pathway
8
pathway autophagy
8
autophagy
7

Similar Publications

This study utilizes single-cell RNA sequencing data to reveal the transcriptomic characteristics of breast cancer and normal epithelial cells. Nine significant cell populations were identified through stringent quality control and batch effect correction. Further classification of breast cancer epithelial cells based on the PAM50 method and clinical subtypes highlighted significant heterogeneity between triple-negative breast cancer (TNBC) and non-triple-negative breast cancer (NTNBC).

View Article and Find Full Text PDF

In the past few years, three protein molecules-USP53, NPY2R, and DCTN1-AS1-have garnered significant attention in scientific research due to their potential implications in tumor development. Mass spectrometry and proteomics techniques were used to analyze the three-dimensional structure of these protein molecules and predict their active sites and functional domains. The effects of USP53, NPY2R and DCTN1-AS1 on biological behavior of tumor cells were studied by constructing gene knockout and overexpression cell models.

View Article and Find Full Text PDF

Delays in chemotherapy and radiotherapy of breast cancer during COVID-19 pandemic.

J Infect Public Health

January 2025

Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Department of Community and Family Medicine, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O Box: 14665-354, Tehran 1449614535, Iran.

Background: During the COVID-19 pandemic, hospitals were overwhelmed with infected patients, leading to a disruption in the delivery of services. Patients with cancer, including breast cancer, rely on timely treatment, as delays can reduce survival rates. In this study, we investigated delays in treatment and the factors contributing to delays in chemotherapy and radiotherapy for these patients.

View Article and Find Full Text PDF

Molecularly manipulating pyrazinoquinoxaline derivatives to construct NIR-II AIEgens for multimodal phototheranostics of breast cancer bone metastases.

Biomaterials

January 2025

Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China. Electronic address:

Multimodal phototheranostics on the basis of single molecular species shows inexhaustible and vigorous vitality, particularly those emit fluorescence in the second near-infrared window (NIR-II), the construction of such exceptional molecules nonetheless retains formidably challenging. In view of the undiversified molecular skeletons and insufficient phototheranostic outputs of previously reported NIR-II fluorophores, herein, electron acceptor engineering based on heteroatom-inserted rigid-planar pyrazinoquinoxaline was manipulated to fabricate aggregation-induced emission (AIE)-featured NIR-II counterparts with donor-acceptor-donor (D-A-D) architecture. Systematical investigations substantiated that one of those synthesized AIE molecules, namely 4TPQ, incorporating a fused thiophene acceptor, synchronously exhibited high molar absorptivity (ε), NIR-II emission, typical AIE tendency, significant reactive oxygen species (ROS) generation, and high photothermal conversion efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!