A high-resolution genome of an euryhaline and eurythermal rhinogoby (Rhinogobius similis Gill 1895).

G3 (Bethesda)

Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China.

Published: February 2022

Rhinogobius similis is distributed in East and Southeast Asia. It is an amphidromous species found mostly in freshwater and sometimes brackish waters. We have obtained a high-resolution assembly of the R. similis genome using nanopore sequencing, high-throughput chromosome conformation capture (Hi-C), and transcriptomic data. The assembled genome was 890.10 Mb in size and 40.15% in GC content. Including 1373 contigs with contig N50 is 1.54 Mb, and scaffold N50 is 41.51 Mb. All of the 1373 contigs were anchored on 22 pairs of chromosomes. The BUSCO evaluation score was 93.02% indicating high quality of genome assembly. The repeat sequences accounted for 34.92% of the whole genome, with retroelements (30.13%), DNA transposons (1.64%), simple repeats (2.34%), and so forth. A total of 31,089 protein-coding genes were predicted in the genome and functionally annotated using Maker, of those genes, 26,893 (86.50%) were found in InterProScan5. There were 1910 gene families expanded in R. similis, 1171 gene families contracted and 170 gene families rapidly evolving. We have compared one rapidly change gene family (PF05970) commonly found in four species (Boleophthalmus pectinirostris, Neogobius melanostomus, Periophthalmus magnuspinnatus, and R. similis), which was found probably related to the lifespan of those species. During 400-10 Ka, the period of the Guxiang Ice Age, the population of R. similis decreased drastically, and then increased gradually following the last interglacial period. A high-resolution genome of R. similis should be useful to study taxonomy, biogeography, comparative genomics, and adaptive evolution of the most speciose freshwater goby genus, Rhinogobius.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9210307PMC
http://dx.doi.org/10.1093/g3journal/jkab395DOI Listing

Publication Analysis

Top Keywords

gene families
12
high-resolution genome
8
rhinogobius similis
8
1373 contigs
8
similis
7
genome
6
genome euryhaline
4
euryhaline eurythermal
4
eurythermal rhinogoby
4
rhinogoby rhinogobius
4

Similar Publications

Joint pain is the primary symptom of osteoarthritis (OA) and the main motivator for patients to seek medical care. OA-related pain significantly restricts joint function and diminishes quality of life. Despite the availability of various pain-relieving medications for OA, current treatment strategies often fall short in delivering adequate pain relief.

View Article and Find Full Text PDF

CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.

View Article and Find Full Text PDF

Introduction: The envelope proteins syncytin-1 and pHERV-W from the Human Endogenous Retroviral family 'W' (HERV-W) have been identified as potential risk factors in multiple sclerosis (MS). This study aims to evaluate both humoral and cell-mediated immune response to antigenic peptides derived from these proteins across different clinical forms and inflammatory phases of MS.

Methods: Indirect enzyme-linked immunosorbent assay (ELISA) was employed to measure immunoglobulin G (IgG) responses to syncytin-1 and pHERV-W peptides in MS patients.

View Article and Find Full Text PDF

Copy number variations of the human gene, resulting from megabase-scale microdeletions or microduplications in the 3p26.3 region, are frequently implicated in neurodevelopmental disorders such as intellectual disability and developmental delay. However, duplication of the full-length human gene presents with variable penetrance, resulting in phenotypes that range from neurodevelopmental disorders to no visible pathologies, even within the same family.

View Article and Find Full Text PDF

Context: Despite a growing number of studies, the genetic etiology in many cases of ovarian dysgenesis is incompletely understood.

Objectives: This work aimed to study the genetic etiology causing absence of spontaneous pubertal development, hypergonadotropic hypogonadism, and primary amenorrhea in 2 sisters.

Methods: Whole-exome sequencing was performed on DNA extracted from peripheral lymphocytes of 2 Palestinian sisters born to consanguineous parents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!