Xenobiotics can interact with cytochromes P450 (CYPs), resulting in drug-drug interactions, but CYPs can also contribute to drug-disease interactions, especially in the case of inflammation, which downregulates CYP activities through pretranscriptional and posttranscriptional mechanisms. Interleukin-6 (IL-6), a key proinflammatory cytokine, is mainly responsible for this effect. The aim of our study was to develop a physiologically based pharmacokinetic (PBPK) model to foresee the impact of elevated IL-6 levels in combination with drug interactions with esomeprazole on CYP3A and CYP2C19. Data from a cohort of elective hip surgery patients whose CYP3A and CYP2C19 activities were measured before and after surgery were used to validate the accurate prediction of the developed models. Successive steps were to fit models for IL-6, esomeprazole, and omeprazole and its metabolite from the literature and to validate them. The models for midazolam and its metabolite were obtained from the literature. When appropriate, a correction factor was applied to convert drug concentrations from whole blood to plasma. Mean ratios between simulated and observed areas under the curve for omeprazole/5-hydroxy omeprazole, esomeprazole, and IL-6 were 1.53, 1.06, and 0.69, respectively, indicating an accurate prediction of the developed models. The impact of IL-6 and esomeprazole on the exposure to CYP3A and CYP2C19 probe substrates and respective metabolites were correctly predicted. Indeed, the ratio between predicted and observed mean concentrations were <2 for all observations (ranging from 0.51 to 1.7). The impact of IL-6 and esomeprazole on CYP3A and CYP2C19 activities after a hip surgery were correctly predicted with the developed PBPK models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8752107 | PMC |
http://dx.doi.org/10.1002/psp4.12730 | DOI Listing |
Int J Med Sci
January 2025
Department of Otolaryngology, Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
Clin Pharmacokinet
December 2024
Clinical Pharmacology, AbbVie Inc., Dept R4PK, Bldg AP31-3, 1 North Waukegan Road, North Chicago, IL, 60064-1802, USA.
Background And Objective: The objective of this study was to characterize the effects of risankizumab on the pharmacokinetics of cytochrome P450 (CYP) 1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A substrates in patients with moderately to severely active Crohn's disease (CD) or ulcerative colitis (UC) using a cocktail approach.
Methods: Patients with CD or UC (n = 20) received single doses of probe substrates for CYP1A2 (caffeine 100 mg), CYP2C9 (warfarin 10 mg), CYP2C19 (omeprazole 20 mg), CYP2D6 (metoprolol 50 mg), and CYP3A (midazolam 2 mg) before and after intravenous infusions of risankizumab 1800 mg once every 4 weeks for four doses. Serial blood samples were collected for determination of concentrations of the CYP probe drugs and metabolites with and without risankizumab.
Clin Pharmacokinet
November 2024
Department of Pharmacy, Radboudumc Institute for Medical Innovation (RIMI), Radboudumc, Geert Grooteplein 10, 6525 GA, Nijmegen, The Netherlands.
Letermovir and maribavir have demonstrated efficacy in the prevention and treatment, respectively, of immunosuppressed patients with cytomegalovirus (CMV) infection and disease. These patients often have polypharmacy making them at risk for drug-drug interactions. Both letermovir and maribavir can be perpetrators and victims of drug-drug interactions.
View Article and Find Full Text PDFClin Pharmacokinet
November 2024
Department of Clinical Pharmacy and Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany.
Background And Objective: Voriconazole (VRC), a broad-spectrum antifungal drug, exhibits nonlinear pharmacokinetics (PK) due to saturable metabolic processes, autoinhibition and metabolite-mediated inhibition on their own formation. VRC PK is also characterised by high inter- and intraindividual variability, primarily associated with cytochrome P450 (CYP) 2C19 genetic polymorphism. Additionally, recent in vitro findings indicate that VRC main metabolites, voriconazole N-oxide (NO) and hydroxyvoriconazole (OHVRC), inhibit CYP enzymes responsible for VRC metabolism, adding to its PK variability.
View Article and Find Full Text PDFMetabolites
September 2024
Center of Excellence in Drug Interaction Science, Certara USA, 4 Radnor Corporate Center, Suite 350, Radnor, PA 19087, USA.
Background/objectives: Index substrates are used to understand the processes involved in pharmacokinetic (PK) drug-drug interactions (DDIs). The aim of this analysis is to review metabolite measurement in clinical DDI studies, focusing on index substrates for cytochrome P450 (CYP) enzymes, including CYP1A2 (caffeine), CYP2B6 (bupropion), CYP2C8 (repaglinide), CYP2C9 ((S)-warfarin, flurbiprofen), CYP2C19 (omeprazole), CYP2D6 (desipramine, dextromethorphan, nebivolol), and CYP3A (midazolam, triazolam).
Methods: All data used in this evaluation were obtained from the Certara Drug Interaction Database.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!