Stress imaging identifies ischemic myocardium by comparing hemodynamics during rest and hyperemic stress. Hyperemia affects multiple hemodynamic parameters in myocardium, including myocardial blood flow (MBF), myocardial blood volume (MBV), and venous blood oxygen levels (PvO ). Cardiac T2 is sensitive to these changes and therefore is a promising non-contrast option for stress imaging; however, the impact of individual hemodynamic factors on T2 is poorly understood, making the connection from altered T2 to changes within the tissue difficult. To better understand this interplay, we performed T2 mapping and measured various hemodynamic factors independently in healthy pigs at multiple levels of hyperemic stress, induced by different doses of adenosine (0.14-0.56 mg/kg/min). T1 mapping quantified changes in MBV. MBF was assessed with microspheres, and oxygen consumption was determined by the rate pressure product (RPP). Simulations were also run to better characterize individual contributions to T2. Myocardial T2, MBF, oxygen consumption, and MBV all changed to varying extents between each level of adenosine stress (T2 = 37.6-41.8 ms; MBF = 0.48-1.32 mL/min/g; RPP = 6507-4001 bmp*mmHg; maximum percent change in MBV = 1.31%). Multivariable analyses revealed MBF as the dominant influence on T2 during hyperemia (significant β-values >7). Myocardial oxygen consumption had almost no effect on T2 (β-values <0.002); since PvO is influenced by both oxygen consumption and MBF, PvO changes detected by T2 during adenosine stress can be attributed to MBF. Simulations varying PvO and MBV confirmed that PvO had the strongest influence on T2, but MBV became important at high PvO . Together, these data suggest a model where, during adenosine stress, myocardial T2 responds predominantly to changes in MBF, but at high hyperemia MBV is also influential. Thus, changes in adenosine stress T2 can now be interpreted in terms of the physiological changes that led to it, enabling T2 mapping to become a viable non-contrast option to detect ischemic myocardial tissue.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8828684 | PMC |
http://dx.doi.org/10.1002/nbm.4643 | DOI Listing |
Front Cardiovasc Med
January 2025
Department of Anesthesiology and Reanimation, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Türkiye.
Aim: This study aimed to protect brain functions in patients who experienced in-hospital cardiac arrest through the application of local cerebral hypothermia. By utilizing a specialized thermal hypothermia device, this approach sought to mitigate ischemic brain injury associated with post-cardiac arrest syndrome, enhance survival rates, and improve neurological outcomes as measured by standardized scales.
Methods: A prospective, single-center cohort study was conducted involving patients aged ≥18 years who experienced in-hospital cardiac arrest and achieved return of spontaneous circulation (ROSC).
J Cardiothorac Surg
January 2025
The First Department of Cardiology, Beidahuang Industry Group General Hospital, Harbin, 150000, Heilongjiang Province, China.
Objective: it was to evaluate the efficacy and safety of rapamycin-eluting stents at different doses in the treatment of coronary artery narrowing in miniature pigs.
Methods: a total of 20 miniature pigs were randomly assigned into four groups: S1 group (low-dose rapamycin-coated stent, 55 µg/mm), S2 group (medium-dose rapamycin-coated stent, 120 µg/mm), S3 group (high-dose rapamycin-coated stent, 415 µg/mm), and D0 group (bare metal stent). The stent size was 3.
BMC Cardiovasc Disord
January 2025
Department of Cardiology, 920th Hospital of Joint Logistics Support Force, People's Liberation Army of China (PLA), Kunming, Yunnan, China.
Objective: This study aimed to evaluate the predictive performance of inflammatory and nutritional indices for adverse cardiovascular events (ACE) in patients with acute myocardial infarction (AMI) after percutaneous coronary intervention (PCI) using a machine learning (ML) algorithm.
Methods: AMI patients who underwent PCI were recruited and randomly divided into non/ACE groups. Inflammatory and nutritional indices were graded according to the laboratory examination reports.
BMC Cardiovasc Disord
January 2025
Department of Surgery, Division of Cardiac Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
Background: Acute lung injury and acute respiratory failure are frequent complications of cardiogenic shock and are associated with increased morbidity and mortality. Even with increased use of temporary mechanical circulatory support, such as venoarterial extracorporeal membrane oxygenation (VA-ECMO), acute lung injury related to cardiogenic shock continues to have a determinantal effect on patient outcomes.
Objectives: To summarize potential mechanisms of acute lung injury described in patients with cardiogenic shock supported by VA-ECMO and determine current knowledge gaps.
Hellenic J Cardiol
January 2025
Department of Cardiovascular Medicine, University of Yamanashi Faculty of Medicine, Chuo, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!