Genome wide association studies (GWAS) have identified autoimmune disease‑associated loci, a number of which are involved in numerous disease‑associated pathways. However, much of the underlying genetic and pathophysiological mechanisms remain to be elucidated. Systemic lupus erythematosus (SLE) is a chronic, highly heterogeneous autoimmune disease, characterized by differences in autoantibody profile, serum cytokines and a multi‑system involvement. This study presents the Epione application, an integrated bioinformatics web‑toolkit, designed to assist medical experts and researchers in more accurately diagnosing SLE. The application aims to identify the most credible gene variants and single nucleotide polymorphisms (SNPs) associated with SLE susceptibility, by using patient's genomic data to aid the medical expert in SLE diagnosis. The application contains useful knowledge of >70,000 SLE‑related publications that have been analyzed, using data mining and semantic techniques, towards extracting the SLE‑related genes and the corresponding SNPs. Probable genes associated with the patient's genomic profile are visualized with several graphs, including chromosome ideograms, statistic bars and regulatory networks through data mining studies with relative publications, to obtain a representative number of the most credible candidate genes and biological pathways associated with the SLE. Furthermore, an evaluation study was performed on a patient diagnosed with SLE and is presented herein. Epione has also been expanded in family‑related candidate patients to evaluate its predictive power. All the recognized gene variants that were previously considered to be associated with SLE were accurately identified in the output profile of the patient, and by comparing the results, novel findings have emerged. The Epione application may assist and facilitate in early stage diagnosis by using the patients' genomic profile to compare against the list of the most predictable candidate gene variants related to SLE. Its diagnosis‑oriented output presents the user with a structured set of results on variant association, position in genome and links to specific bibliography and gene network associations. The overall aim of the present study was to provide a reliable tool for the most effective study of SLE. This novel and accessible webserver tool of SLE is available at http://geneticslab.aua.gr/epione/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8612305PMC
http://dx.doi.org/10.3892/ijmm.2021.5063DOI Listing

Publication Analysis

Top Keywords

epione application
12
gene variants
12
associated sle
12
sle
10
application integrated
8
systemic lupus
8
lupus erythematosus
8
patient's genomic
8
data mining
8
genomic profile
8

Similar Publications

Background And Objective: Magnetic resonance imaging (MRI) plays a critical role in prostate cancer diagnosis, but is limited by variability in interpretation and diagnostic accuracy. This systematic review evaluates the current state of deep learning (DL) models in enhancing the automatic detection, localization, and characterization of clinically significant prostate cancer (csPCa) on MRI.

Methods: A systematic search was conducted across Medline/PubMed, Embase, Web of Science, and ScienceDirect for studies published between January 2020 and September 2023.

View Article and Find Full Text PDF

Liver vessel segmentation from routinely performed medical imaging is a useful tool for diagnosis, treatment planning and delivery, and prognosis evaluation for many diseases, particularly liver cancer. A precise representation of liver anatomy is crucial to define the extent of the disease and, when suitable, the consequent resective or ablative procedure, in order to guarantee a radical treatment without sacrificing an excessive volume of healthy liver. Once mainly performed manually, with notable cost in terms of time and human energies, vessel segmentation is currently realized through the application of artificial intelligence (AI), which has gained increased interest and development of the field.

View Article and Find Full Text PDF

Artificial intelligence applied to MRI data to tackle key challenges in multiple sclerosis.

Mult Scler

June 2024

NMR Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK.

Artificial intelligence (AI) is the branch of science aiming at creating algorithms able to carry out tasks that typically require human intelligence. In medicine, there has been a tremendous increase in AI applications thanks to increasingly powerful computers and the emergence of big data repositories. Multiple sclerosis (MS) is a chronic autoimmune condition affecting the central nervous system with a complex pathogenesis, a challenging diagnostic process strongly relying on magnetic resonance imaging (MRI) and a high and largely unexplained variability across patients.

View Article and Find Full Text PDF

Image registration is a key task in medical imaging applications, allowing to represent medical images in a common spatial reference frame. Current approaches to image registration are generally based on the assumption that the content of the images is usually accessible in clear form, from which the spatial transformation is subsequently estimated. This common assumption may not be met in practical applications, since the sensitive nature of medical images may ultimately require their analysis under privacy constraints, preventing to openly share the image content.

View Article and Find Full Text PDF

From practising a procedure, such as a lumbar puncture, to explaining the aim and method and listening to concerns, the practice of health professionals requires a range of skills, often classified into technical and non-technical skills. Just as gestures and procedures can be taught, so can empathy and communication skills. This article introduces an innovative approach that unites both necessary types of skills.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!