A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development and validation of a prediction model for actionable aspects of frailty in the text of clinicians' encounter notes. | LitMetric

Objective: Frailty is a prevalent risk factor for adverse outcomes among patients with chronic lung disease. However, identifying frail patients who may benefit from interventions is challenging using standard data sources. We therefore sought to identify phrases in clinical notes in the electronic health record (EHR) that describe actionable frailty syndromes.

Materials And Methods: We used an active learning strategy to select notes from the EHR and annotated each sentence for 4 actionable aspects of frailty: respiratory impairment, musculoskeletal problems, fall risk, and nutritional deficiencies. We compared the performance of regression, tree-based, and neural network models to predict the labels for each sentence. We evaluated performance with the scaled Brier score (SBS), where 1 is perfect and 0 is uninformative, and the positive predictive value (PPV).

Results: We manually annotated 155 952 sentences from 326 patients. Elastic net regression had the best performance across all 4 frailty aspects (SBS 0.52, 95% confidence interval [CI] 0.49-0.54) followed by random forests (SBS 0.49, 95% CI 0.47-0.51), and multi-task neural networks (SBS 0.39, 95% CI 0.37-0.42). For the elastic net model, the PPV for identifying the presence of respiratory impairment was 54.8% (95% CI 53.3%-56.6%) at a sensitivity of 80%.

Discussion: Classification models using EHR notes can effectively identify actionable aspects of frailty among patients living with chronic lung disease. Regression performed better than random forest and neural network models.

Conclusions: NLP-based models offer promising support to population health management programs that seek to identify and refer community-dwelling patients with frailty for evidence-based interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8714261PMC
http://dx.doi.org/10.1093/jamia/ocab248DOI Listing

Publication Analysis

Top Keywords

actionable aspects
12
aspects frailty
12
chronic lung
8
lung disease
8
respiratory impairment
8
neural network
8
elastic net
8
frailty
7
patients
5
development validation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!