The purpose of meiosis is to generate developmentally competent, haploid gametes with the correct number of chromosomes. For reasons not completely understood, female meiosis is more prone to chromosome segregation errors than meiosis in males, leading to an abnormal number of chromosomes, or aneuploidy, in gametes. Meiotic spindles are the cellular machinery essential for the proper segregation of chromosomes. One unique feature of spindle structures in female meiosis is spindles poles that lack centrioles. The process of building a meiotic spindle without centrioles is complex and requires precise coordination of different structural components, assembly factors, motor proteins, and signaling molecules at specific times and locations to regulate each step. In this review, we discuss the basics of spindle formation during oocyte meiotic maturation focusing on mouse and human studies. Finally, we review different factors that could alter the process of spindle formation and its stability. We conclude with a discussion of how different assisted reproductive technologies could affect spindles and the consequences these perturbations may have for subsequent embryo development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8862719 | PMC |
http://dx.doi.org/10.1093/biolre/ioab210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!