Aerosolization of SARS-CoV-2 by COVID-19 patients can put healthcare workers and susceptible individuals at risk of infection. Air sampling for SARS-CoV-2 has been conducted in healthcare settings, but methods vary widely and there is need for improvement. The objective of this study was to evaluate the feasibility of using a high-volume filter sampler, BioCapture z720, to detect SARS-CoV-2 in COVID-19 patient rooms in a medical intensive care unit, a dedicated COVID-19 ward, and at nurses' stations. In some locations, the BioSpot-VIVAS, known for high efficiency in the collection of virus-containing bioaerosols, was also operated. The samples were processed for SARS-CoV-2 RNA with multi-plex nested polymerase chain reaction. One of 28 samples collected with the high-volume filter sampler was positive for SARS-CoV-2; all 6 samples collected with BioSpot-VIVAS were negative for SARS-CoV-2. The high-volume filter sampler was more portable and less intrusive in patient rooms than the BioSpot-VIVAS, but limits of detection remain unknown for this device. This study will inform future work to evaluate the reliability of these types of instruments and inform best practices for their use in healthcare environments for SARS-CoV-2 air sampling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767856 | PMC |
http://dx.doi.org/10.1093/annweh/wxab100 | DOI Listing |
JSLS
January 2025
Department of Obstetrics and Gynecology, NYU Langone Health Grossman School of Medicine, New York, New York, USA. (Drs. V. Shah, Munoz, and Huang).
Background And Objectives: Operating rooms (ORs) are critical for hospital revenue and cost management, with utilization efficiency directly affecting financial outcomes. Traditional surgical scheduling often results in suboptimal OR use. We aim to build a machine learning (ML) model to predict incision times for robotic-assisted hysterectomies, enhancing scheduling accuracy and hospital finances.
View Article and Find Full Text PDFHealth Phys
January 2025
National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, 100088, China.
Inhalation of 131I is the main route for internal doses to nuclear medicine workers. This study aimed to establish a simple analysis method for determining 131I activity in carbon cartridges, explore the activity concentration of 131I in nuclear medicine departments, and evaluate the internal dose of workers. A total of 21 nuclear medicine departments in the hospital conducted air sampling using a high-volume air sampler equipped with carbon cartridges and glass fiber filters to collect gaseous 131I and aerosol 131I, respectively.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, MG, 6627, 370901, Brazil.
The development of methods for determining volatile and semi-volatile organic compounds in public spaces has become necessary to identify potential health and environmental risks. This study presents a practical methodology for sampling, extracting, detecting, and identifying these compounds in a vehicular traffic region in Belo Horizonte, Brazil. The methodology uses direct-immersion solid phase microextraction (DI-SPME) and static headspace (SHS) to extract SVOCs/VOCs.
View Article and Find Full Text PDFAnal Chem
December 2024
Department of Environmental Engineering, Eskişehir Technical University, Eskişehir 26555, Türkiye.
Inhalable micro(nano)plastics (MNPs) have emerged as a significant global concern due to their abundance and persistence in the atmosphere. Despite a growing body of literature addressing the analytical requirements of airborne MNPs, the issue of inhalable fractions and analysis of slotted substrates remains unclear. Therefore, the objective of this study is to perform a systematic particle-based analysis and characterization of inhalable microplastics (MPs) collected by a high-volume sampler equipped with a five-stage cascade impactor with a size range of 10 μm to <0.
View Article and Find Full Text PDFSports Med
December 2024
ExPhy Research Group, Department of Physical Education, University of Cadiz, Puerto Real, Cádiz, Spain.
Background: Exercise is a non-pharmacological intervention for type 2 diabetes mellitus (T2DM), including moderate-intensity continuous training (MICT) and high-intensity interval training (HIIT). Despite diverse exercise protocol variations, the impact of these variations in HIIT on T2DM anthropometrics, glycemic control, and cardiorespiratory fitness (CRF) remains unclear.
Objective: The aim was to examine the influence of HIIT protocol characteristics on anthropometrics, glycemic control, and CRF in T2DM patients and compare it to control (without exercise) and MICT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!