Introduction: Although communal smoking of hookah by means of water pipes is perceived to be a safe alternative to cigarette smoking, the effects of hookah smoke in respiratory epithelia have not been well characterized. This study evaluated epigenomic and transcriptomic effects of hookah smoke relative to cigarette smoke in human respiratory epithelial cells.

Methods: Primary normal human small airway epithelial cells from three donors and cdk4 and hTERT-immortalized small airway epithelial cells and human bronchial epithelial cells were cultured for 5 days in normal media with or without cigarette smoke condensates (CSCs) or water pipe condensates (WPCs). Cell count, immunoblot, RNA sequencing, quantitative real-time reverse-transcriptase polymerase chain reaction, methylation-specific polymerase chain reaction, and quantitative chromatin immunoprecipitation techniques were used to compare effects of hookah and cigarette smoke on cell proliferation, global histone marks, gene expression, and promoter-related chromatin structure.

Results: CSC and WPC decreased global H4K16ac and H4K20me3 histone marks and mediated distinct and overlapping cancer-associated transcriptome signatures and pathway modulations that were cell line dependent and stratified across lung cancer cells in a histology-specific manner. Epiregulin encoding a master regulator of EGFR signaling that is overexpressed in lung cancers was up-regulated, whereas FILIP1L and ABI3BP encoding mediators of senescence that are repressed in lung cancers were down-regulated by CSC and WPC. Induction of epiregulin and repression of FILIP1L and ABI3BP by these condensates coincided with unique epigenetic alterations within the respective promoters.

Conclusions: These findings support translational studies to ascertain if hookah-mediated epigenomic and transcriptomic alterations in cultured respiratory epithelia are detectable and clinically relevant in hookah smokers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8479631PMC
http://dx.doi.org/10.1016/j.jtocrr.2021.100181DOI Listing

Publication Analysis

Top Keywords

epithelial cells
16
hookah smoke
12
epigenomic transcriptomic
12
effects hookah
12
cigarette smoke
12
human respiratory
8
respiratory epithelial
8
respiratory epithelia
8
small airway
8
airway epithelial
8

Similar Publications

Diverse autoinhibitory mechanisms of FIIND-containing proteins: Insight into regulation of NLRP1 and CARD8 inflammasome.

PLoS Pathog

January 2025

Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.

View Article and Find Full Text PDF

Background: Machupo virus (MACV) is a New World mammarenavirus (hereafter referred to as "arenavirus") and the etiologic agent of Bolivian hemorrhagic fever (BHF). No vaccine or antiviral therapy exists for BHF, which causes up to 35% mortality in humans. New World arenaviruses evolve separately in different locations.

View Article and Find Full Text PDF

Oxygen controls most metazoan metabolism, yet in mammals, tissue O levels vary widely. While extensive research has explored cellular responses to hypoxia, understanding how cells respond to physiologically high O levels remains uncertain. To address this problem, we investigated respiratory epithelia as their contact with air exposes them to some of the highest O levels in the body.

View Article and Find Full Text PDF

This study identifies the secondary metabolites from Alternaria alternate and evaluates their ACE-2: Spike RBD (SARS-CoV-2) inhibitory activity confirmed via immunoblotting in human lung microvascular endothelial cells. In addition, their in vitro anti-inflammatory potential was assessed using a cell-based assay in LPS-treated RAW 264.7 macrophage cells.

View Article and Find Full Text PDF

Objective: Using rabbit models, this study simulated the laryngopharynx's response to the synergistic effects of various acidic reflux environments and pepsin to investigate the response mechanism underlying weak acid reflux and pepsin in the mucosal barrier injury of laryngopharyngeal reflux.

Methods: The rabbits were divided into six groups, and the original larynx was recorded for each group. During the study period, rabbits were sprayed with different doses of acid and pepsin solutions and monitored for hypopharyngeal mucosal transient impedance before and after modeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!